|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
NUM_ZERO = 0 |
|
ORTHO = False |
|
ORTHO_v2 = False |
|
|
|
|
|
class AttnProcessor(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
id_embedding=None, |
|
id_scale=1.0, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class IDAttnProcessor(nn.Module): |
|
r""" |
|
Attention processor for ID-Adapater. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None): |
|
super().__init__() |
|
self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
id_embedding=None, |
|
id_scale=1.0, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
if id_embedding is not None: |
|
if NUM_ZERO == 0: |
|
id_key = self.id_to_k(id_embedding) |
|
id_value = self.id_to_v(id_embedding) |
|
else: |
|
zero_tensor = torch.zeros( |
|
(id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)), |
|
dtype=id_embedding.dtype, |
|
device=id_embedding.device, |
|
) |
|
id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1)) |
|
id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1)) |
|
|
|
id_key = attn.head_to_batch_dim(id_key).to(query.dtype) |
|
id_value = attn.head_to_batch_dim(id_value).to(query.dtype) |
|
|
|
id_attention_probs = attn.get_attention_scores(query, id_key, None) |
|
id_hidden_states = torch.bmm(id_attention_probs, id_value) |
|
id_hidden_states = attn.batch_to_head_dim(id_hidden_states) |
|
|
|
if not ORTHO: |
|
hidden_states = hidden_states + id_scale * id_hidden_states |
|
else: |
|
projection = ( |
|
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) |
|
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) |
|
* hidden_states |
|
) |
|
orthogonal = id_hidden_states - projection |
|
hidden_states = hidden_states + id_scale * orthogonal |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnProcessor2_0(nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
id_embedding=None, |
|
id_scale=1.0, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class IDAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Attention processor for ID-Adapater for PyTorch 2.0. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
id_embedding=None, |
|
id_scale=1.0, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if id_embedding is not None: |
|
if NUM_ZERO == 0: |
|
id_key = self.id_to_k(id_embedding).to(query.dtype) |
|
id_value = self.id_to_v(id_embedding).to(query.dtype) |
|
else: |
|
zero_tensor = torch.zeros( |
|
(id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)), |
|
dtype=id_embedding.dtype, |
|
device=id_embedding.device, |
|
) |
|
id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype) |
|
id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype) |
|
|
|
id_key = id_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
id_value = id_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
id_hidden_states = F.scaled_dot_product_attention( |
|
query, id_key, id_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
id_hidden_states = id_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
id_hidden_states = id_hidden_states.to(query.dtype) |
|
|
|
if not ORTHO and not ORTHO_v2: |
|
hidden_states = hidden_states + id_scale * id_hidden_states |
|
elif ORTHO_v2: |
|
orig_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
id_hidden_states = id_hidden_states.to(torch.float32) |
|
attn_map = query @ id_key.transpose(-2, -1) |
|
attn_mean = attn_map.softmax(dim=-1).mean(dim=1) |
|
attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True) |
|
projection = ( |
|
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) |
|
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) |
|
* hidden_states |
|
) |
|
orthogonal = id_hidden_states + (attn_mean - 1) * projection |
|
hidden_states = hidden_states + id_scale * orthogonal |
|
hidden_states = hidden_states.to(orig_dtype) |
|
else: |
|
orig_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
id_hidden_states = id_hidden_states.to(torch.float32) |
|
projection = ( |
|
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True) |
|
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True) |
|
* hidden_states |
|
) |
|
orthogonal = id_hidden_states - projection |
|
hidden_states = hidden_states + id_scale * orthogonal |
|
hidden_states = hidden_states.to(orig_dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|