File size: 6,697 Bytes
9887d4c
 
 
 
7696de6
 
9887d4c
7696de6
 
 
 
 
 
9887d4c
7696de6
af079bb
7696de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af079bb
9887d4c
 
 
7696de6
9887d4c
 
7696de6
 
 
 
9887d4c
 
7696de6
 
 
5072f90
7696de6
 
 
 
 
 
9887d4c
5072f90
9887d4c
 
7696de6
 
 
 
9887d4c
 
 
 
 
7696de6
9887d4c
 
 
 
 
7696de6
 
9887d4c
 
 
 
 
 
 
 
 
 
 
 
7696de6
 
 
9887d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099c99b
9887d4c
 
 
 
 
 
099c99b
9887d4c
 
 
 
 
 
 
099c99b
9887d4c
 
 
 
7696de6
9887d4c
7696de6
9887d4c
7696de6
 
 
 
 
 
 
9887d4c
 
7696de6
 
 
 
5ddbee5
9887d4c
 
f8ac431
7696de6
 
 
 
9887d4c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os

from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import AutoencoderKL, EulerDiscreteScheduler

from huggingface_hub import snapshot_download

device = "cuda" if torch.cuda.is_available() else "cpu"
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
ckpt_dir = f'{root_dir}/weights/Kolors'

snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir)
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus")

# Load models
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',
    ignore_mismatched_sizes=True
).to(dtype=torch.float16, device=device)

ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)

pipe = StableDiffusionXLPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
)

pipe = pipe.to(device)
#pipe.enable_model_cpu_offload()

if hasattr(pipe.unet, 'encoder_hid_proj'):
    pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj

pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(prompt, ip_adapter_image, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, ip_adapter_scale=0.5, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device="cpu").manual_seed(seed)
    
    pipe.set_ip_adapter_scale([ip_adapter_scale])
    
    image = pipe(
        prompt=prompt,
        ip_adapter_image=[ip_adapter_image],
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    
    return image, seed

examples = [
    ["A photo of a lavender cat", "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/640px-Cat_November_2010-1a.jpg"],
    ["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Astronaut_EVA.jpg/640px-Astronaut_EVA.jpg"],
    ["An astronaut riding a green horse", "https://upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Haflinger_in-motion.jpg/640px-Haflinger_in-motion.jpg"],
    ["A delicious ceviche cheesecake slice", "https://upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Ceviche_mixto.jpg/640px-Ceviche_mixto.jpg"],
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 720px;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Kolors Demo
        Demo of the Kolors model with IP-Adapter integration
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        with gr.Row():
            ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
            result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                )
            ip_adapter_scale = gr.Slider(
                label="IP-Adapter Scale",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=0.5,
            )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt, ip_adapter_image],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, ip_adapter_image, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ip_adapter_scale],
        outputs=[result, seed]
    )

demo.queue().launch()