|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import torch |
|
from PIL import Image |
|
import os |
|
|
|
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor |
|
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from kolors.models.unet_2d_condition import UNet2DConditionModel |
|
from diffusers import AutoencoderKL, EulerDiscreteScheduler |
|
|
|
from huggingface_hub import snapshot_download |
|
import spaces |
|
|
|
device = "cuda" |
|
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
ckpt_dir = f'{root_dir}/weights/Kolors' |
|
|
|
snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir) |
|
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus") |
|
|
|
|
|
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") |
|
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) |
|
|
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', |
|
ignore_mismatched_sizes=True |
|
).to(dtype=torch.float16, device=device) |
|
|
|
ip_img_size = 336 |
|
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) |
|
|
|
pipe = StableDiffusionXLPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
image_encoder=image_encoder, |
|
feature_extractor=clip_image_processor, |
|
force_zeros_for_empty_prompt=False |
|
).to(device) |
|
|
|
|
|
|
|
|
|
if hasattr(pipe.unet, 'encoder_hid_proj'): |
|
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj |
|
|
|
pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"]) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
@spaces.GPU |
|
def infer(prompt, ip_adapter_image, ip_adapter_scale=0.5, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
pipe.to("cuda") |
|
image_encoder.to("cuda") |
|
pipe.image_encoder = image_encoder |
|
pipe.set_ip_adapter_scale([ip_adapter_scale]) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
ip_adapter_image=[ip_adapter_image], |
|
negative_prompt=negative_prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
examples = [ |
|
["A dog", "minta.jpeg", 0.3], |
|
["A capybara", "king-min.png", 0.5], |
|
["A cat", "blue_hair.png", 0.5], |
|
["", "meow.jpeg", 1.0], |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 720px; |
|
} |
|
#result img{ |
|
object-position: top; |
|
} |
|
#result .image-container{ |
|
height: 100% |
|
} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# Kolors IP-Adapter - image reference and variations |
|
""") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil") |
|
ip_adapter_scale = gr.Slider( |
|
label="Image influence scale", |
|
info="Use 1 for creating variations", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.5, |
|
) |
|
result = gr.Image(label="Result", elem_id="result") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=infer, |
|
inputs=[prompt, ip_adapter_image, ip_adapter_scale], |
|
outputs=[result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result, seed] |
|
) |
|
|
|
demo.queue().launch() |