|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from diffusers import AuraFlowPipeline |
|
import torch |
|
import spaces |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
torch.set_float32_matmul_precision("high") |
|
|
|
torch._inductor.config.conv_1x1_as_mm = True |
|
torch._inductor.config.coordinate_descent_tuning = True |
|
torch._inductor.config.epilogue_fusion = False |
|
torch._inductor.config.coordinate_descent_check_all_directions = True |
|
|
|
pipe = AuraFlowPipeline.from_pretrained( |
|
"AuraDiffusion/AuraFlow", |
|
torch_dtype=torch.float16 |
|
).to("cuda") |
|
|
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
|
|
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) |
|
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
@spaces.GPU |
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
image = pipe( |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale = guidance_scale, |
|
num_inference_steps = num_inference_steps, |
|
generator = generator |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
if torch.cuda.is_available(): |
|
power_device = "GPU" |
|
else: |
|
power_device = "CPU" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# AuraFlow 0.1 |
|
Demo of the [AuraFlow 0.1](https://huggingface.co/fal/AuraFlow) 5.6B parameters open source diffusion transformer model [[blog](https://blog.fal.ai/auraflow/)] |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
inputs = [prompt], |
|
cache_examples=False |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit, negative_prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs = [result, seed] |
|
) |
|
|
|
demo.queue().launch() |