fantaxy commited on
Commit
bd11f2a
1 Parent(s): e86ee13

Upload app (3).py

Browse files
Files changed (1) hide show
  1. app (3).py +198 -0
app (3).py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ import torch
5
+ from PIL import Image
6
+ import os
7
+
8
+ from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
9
+ from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
10
+ from kolors.models.modeling_chatglm import ChatGLMModel
11
+ from kolors.models.tokenization_chatglm import ChatGLMTokenizer
12
+ from kolors.models.unet_2d_condition import UNet2DConditionModel
13
+ from diffusers import AutoencoderKL, EulerDiscreteScheduler
14
+
15
+ from huggingface_hub import snapshot_download
16
+ import spaces
17
+
18
+ device = "cuda"
19
+ root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
20
+ ckpt_dir = f'{root_dir}/weights/Kolors'
21
+
22
+ snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir)
23
+ snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus")
24
+
25
+ # Load models
26
+ text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
27
+ tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
28
+ vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
29
+ scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
30
+ unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
31
+
32
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
33
+ f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',
34
+ ignore_mismatched_sizes=True
35
+ ).to(dtype=torch.float16, device=device)
36
+
37
+ ip_img_size = 336
38
+ clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
39
+
40
+ pipe = StableDiffusionXLPipeline(
41
+ vae=vae,
42
+ text_encoder=text_encoder,
43
+ tokenizer=tokenizer,
44
+ unet=unet,
45
+ scheduler=scheduler,
46
+ image_encoder=image_encoder,
47
+ feature_extractor=clip_image_processor,
48
+ force_zeros_for_empty_prompt=False
49
+ ).to(device)
50
+
51
+ #pipe = pipe.to(device)
52
+ #pipe.enable_model_cpu_offload()
53
+
54
+ if hasattr(pipe.unet, 'encoder_hid_proj'):
55
+ pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
56
+
57
+ pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
58
+
59
+ MAX_SEED = np.iinfo(np.int32).max
60
+ MAX_IMAGE_SIZE = 1024
61
+
62
+ @spaces.GPU
63
+ def infer(prompt, ip_adapter_image, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
64
+ if randomize_seed:
65
+ seed = random.randint(0, MAX_SEED)
66
+
67
+ generator = torch.Generator(device="cuda").manual_seed(seed)
68
+ pipe.to("cuda")
69
+ image_encoder.to("cuda")
70
+ pipe.image_encoder = image_encoder
71
+ pipe.set_ip_adapter_scale([ip_adapter_scale])
72
+
73
+ image = pipe(
74
+ prompt=prompt,
75
+ ip_adapter_image=[ip_adapter_image],
76
+ negative_prompt=negative_prompt,
77
+ height=height,
78
+ width=width,
79
+ num_inference_steps=num_inference_steps,
80
+ guidance_scale=guidance_scale,
81
+ num_images_per_prompt=1,
82
+ generator=generator,
83
+ ).images[0]
84
+
85
+ return image, seed
86
+
87
+ examples = [
88
+ ["A dog", "minta.jpeg", 0.4],
89
+ ["A capybara", "king-min.png", 0.5],
90
+ ["A cat", "blue_hair.png", 0.5],
91
+ ["", "meow.jpeg", 1.0],
92
+ ]
93
+
94
+ css="""
95
+ #col-container {
96
+ margin: 0 auto;
97
+ max-width: 720px;
98
+ }
99
+ #result img{
100
+ object-position: top;
101
+ }
102
+ #result .image-container{
103
+ height: 100%
104
+ }
105
+ """
106
+
107
+ with gr.Blocks(css=css) as demo:
108
+ with gr.Column(elem_id="col-container"):
109
+ gr.Markdown(f"""
110
+ # Kolors IP-Adapter - image reference and variations
111
+ """)
112
+
113
+ with gr.Row():
114
+ prompt = gr.Text(
115
+ label="Prompt",
116
+ show_label=False,
117
+ max_lines=1,
118
+ placeholder="Enter your prompt",
119
+ container=False,
120
+ )
121
+ run_button = gr.Button("Run", scale=0)
122
+
123
+ with gr.Row():
124
+ with gr.Column():
125
+ ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
126
+ ip_adapter_scale = gr.Slider(
127
+ label="Image influence scale",
128
+ info="Use 1 for creating variations",
129
+ minimum=0.0,
130
+ maximum=1.0,
131
+ step=0.05,
132
+ value=0.5,
133
+ )
134
+ result = gr.Image(label="Result", elem_id="result")
135
+
136
+ with gr.Accordion("Advanced Settings", open=False):
137
+ negative_prompt = gr.Text(
138
+ label="Negative prompt",
139
+ max_lines=1,
140
+ placeholder="Enter a negative prompt",
141
+ )
142
+ seed = gr.Slider(
143
+ label="Seed",
144
+ minimum=0,
145
+ maximum=MAX_SEED,
146
+ step=1,
147
+ value=0,
148
+ )
149
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
150
+ with gr.Row():
151
+ width = gr.Slider(
152
+ label="Width",
153
+ minimum=256,
154
+ maximum=MAX_IMAGE_SIZE,
155
+ step=32,
156
+ value=1024,
157
+ )
158
+ height = gr.Slider(
159
+ label="Height",
160
+ minimum=256,
161
+ maximum=MAX_IMAGE_SIZE,
162
+ step=32,
163
+ value=1024,
164
+ )
165
+ with gr.Row():
166
+ guidance_scale = gr.Slider(
167
+ label="Guidance scale",
168
+ minimum=0.0,
169
+ maximum=10.0,
170
+ step=0.1,
171
+ value=5.0,
172
+ )
173
+ num_inference_steps = gr.Slider(
174
+ label="Number of inference steps",
175
+ minimum=1,
176
+ maximum=100,
177
+ step=1,
178
+ value=100,
179
+ )
180
+
181
+ gr.Examples(
182
+ examples=examples,
183
+ fn=infer,
184
+ inputs=[prompt, ip_adapter_image, ip_adapter_scale],
185
+ outputs=[result, seed],
186
+ cache_examples="lazy"
187
+ )
188
+
189
+ gr.on(
190
+ triggers=[run_button.click, prompt.submit],
191
+ fn=infer,
192
+ inputs=[prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
193
+ outputs=[result, seed]
194
+ )
195
+
196
+ # 포트 7890 설정, 대기열 활성화, API 활성화
197
+ demo.launch()
198
+