File size: 9,893 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7be96
 
 
 
 
 
 
 
 
 
 
 
 
 
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7be96
 
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7be96
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Adapted from OpenSora

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# OpenSora: https://github.com/hpcaitech/Open-Sora
# --------------------------------------------------------

import torch
import torch.distributed as dist
from einops import rearrange
from torch.distributions import LogisticNormal
from tqdm import tqdm


def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.
    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res + torch.zeros(broadcast_shape, device=timesteps.device)


def mean_flat(tensor: torch.Tensor, mask=None):
    """
    Take the mean over all non-batch dimensions.
    """
    if mask is None:
        return tensor.mean(dim=list(range(1, len(tensor.shape))))
    else:
        assert tensor.dim() == 5
        assert tensor.shape[2] == mask.shape[1]
        tensor = rearrange(tensor, "b c t h w -> b t (c h w)")
        denom = mask.sum(dim=1) * tensor.shape[-1]
        loss = (tensor * mask.unsqueeze(2)).sum(dim=1).sum(dim=1) / denom
        return loss


def timestep_transform(
    t,
    model_kwargs,
    base_resolution=512 * 512,
    base_num_frames=1,
    scale=1.0,
    num_timesteps=1,
):
    t = t / num_timesteps
    resolution = model_kwargs["height"] * model_kwargs["width"]
    ratio_space = (resolution / base_resolution).sqrt()
    # NOTE: currently, we do not take fps into account
    # NOTE: temporal_reduction is hardcoded, this should be equal to the temporal reduction factor of the vae
    if model_kwargs["num_frames"][0] == 1:
        num_frames = torch.ones_like(model_kwargs["num_frames"])
    else:
        num_frames = model_kwargs["num_frames"] // 17 * 5
    ratio_time = (num_frames / base_num_frames).sqrt()

    ratio = ratio_space * ratio_time * scale
    new_t = ratio * t / (1 + (ratio - 1) * t)

    new_t = new_t * num_timesteps
    return new_t


class RFlowScheduler:
    def __init__(
        self,
        num_timesteps=1000,
        num_sampling_steps=10,
        use_discrete_timesteps=False,
        sample_method="uniform",
        loc=0.0,
        scale=1.0,
        use_timestep_transform=False,
        transform_scale=1.0,
    ):
        self.num_timesteps = num_timesteps
        self.num_sampling_steps = num_sampling_steps
        self.use_discrete_timesteps = use_discrete_timesteps

        # sample method
        assert sample_method in ["uniform", "logit-normal"]
        assert (
            sample_method == "uniform" or not use_discrete_timesteps
        ), "Only uniform sampling is supported for discrete timesteps"
        self.sample_method = sample_method
        if sample_method == "logit-normal":
            self.distribution = LogisticNormal(torch.tensor([loc]), torch.tensor([scale]))
            self.sample_t = lambda x: self.distribution.sample((x.shape[0],))[:, 0].to(x.device)

        # timestep transform
        self.use_timestep_transform = use_timestep_transform
        self.transform_scale = transform_scale

    def training_losses(self, model, x_start, model_kwargs=None, noise=None, mask=None, weights=None, t=None):
        """
        Compute training losses for a single timestep.
        Arguments format copied from opensora/schedulers/iddpm/gaussian_diffusion.py/training_losses
        Note: t is int tensor and should be rescaled from [0, num_timesteps-1] to [1,0]
        """
        if t is None:
            if self.use_discrete_timesteps:
                t = torch.randint(0, self.num_timesteps, (x_start.shape[0],), device=x_start.device)
            elif self.sample_method == "uniform":
                t = torch.rand((x_start.shape[0],), device=x_start.device) * self.num_timesteps
            elif self.sample_method == "logit-normal":
                t = self.sample_t(x_start) * self.num_timesteps

            if self.use_timestep_transform:
                t = timestep_transform(t, model_kwargs, scale=self.transform_scale, num_timesteps=self.num_timesteps)

        if model_kwargs is None:
            model_kwargs = {}
        if noise is None:
            noise = torch.randn_like(x_start)
        assert noise.shape == x_start.shape

        x_t = self.add_noise(x_start, noise, t)
        if mask is not None:
            t0 = torch.zeros_like(t)
            x_t0 = self.add_noise(x_start, noise, t0)
            x_t = torch.where(mask[:, None, :, None, None], x_t, x_t0)

        terms = {}
        model_output = model(x_t, t, **model_kwargs)
        velocity_pred = model_output.chunk(2, dim=1)[0]
        if weights is None:
            loss = mean_flat((velocity_pred - (x_start - noise)).pow(2), mask=mask)
        else:
            weight = _extract_into_tensor(weights, t, x_start.shape)
            loss = mean_flat(weight * (velocity_pred - (x_start - noise)).pow(2), mask=mask)
        terms["loss"] = loss

        return terms

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        """
        compatible with diffusers add_noise()
        """
        timepoints = timesteps.float() / self.num_timesteps
        timepoints = 1 - timepoints  # [1,1/1000]

        # timepoint  (bsz) noise: (bsz, 4, frame, w ,h)
        # expand timepoint to noise shape
        timepoints = timepoints.unsqueeze(1).unsqueeze(1).unsqueeze(1).unsqueeze(1)
        timepoints = timepoints.repeat(1, noise.shape[1], noise.shape[2], noise.shape[3], noise.shape[4])

        return timepoints * original_samples + (1 - timepoints) * noise


class RFLOW:
    def __init__(
        self,
        num_sampling_steps=10,
        num_timesteps=1000,
        cfg_scale=4.0,
        use_discrete_timesteps=False,
        use_timestep_transform=False,
        **kwargs,
    ):
        self.num_sampling_steps = num_sampling_steps
        self.num_timesteps = num_timesteps
        self.cfg_scale = cfg_scale
        self.use_discrete_timesteps = use_discrete_timesteps
        self.use_timestep_transform = use_timestep_transform

        self.scheduler = RFlowScheduler(
            num_timesteps=num_timesteps,
            num_sampling_steps=num_sampling_steps,
            use_discrete_timesteps=use_discrete_timesteps,
            use_timestep_transform=use_timestep_transform,
            **kwargs,
        )

    def sample(
        self,
        model,
        z,
        model_args,
        y_null,
        device,
        mask=None,
        guidance_scale=None,
        progress=True,
        verbose=False,
    ):
        # if no specific guidance scale is provided, use the default scale when initializing the scheduler
        if guidance_scale is None:
            guidance_scale = self.cfg_scale

        # text encoding
        model_args["y"] = torch.cat([model_args["y"], y_null], 0)

        # prepare timesteps
        timesteps = [(1.0 - i / self.num_sampling_steps) * self.num_timesteps for i in range(self.num_sampling_steps)]
        if self.use_discrete_timesteps:
            timesteps = [int(round(t)) for t in timesteps]
        timesteps = [torch.tensor([t] * z.shape[0], device=device) for t in timesteps]
        if self.use_timestep_transform:
            timesteps = [timestep_transform(t, model_args, num_timesteps=self.num_timesteps) for t in timesteps]

        if mask is not None:
            noise_added = torch.zeros_like(mask, dtype=torch.bool)
            noise_added = noise_added | (mask == 1)

        progress_wrap = tqdm if progress and dist.get_rank() == 0 else (lambda x: x)

        dtype = model.x_embedder.proj.weight.dtype
        all_timesteps = [int(t.to(dtype).item()) for t in timesteps]
        for i, t in progress_wrap(list(enumerate(timesteps))):
            # mask for adding noise
            if mask is not None:
                mask_t = mask * self.num_timesteps
                x0 = z.clone()
                x_noise = self.scheduler.add_noise(x0, torch.randn_like(x0), t)

                mask_t_upper = mask_t >= t.unsqueeze(1)
                model_args["x_mask"] = mask_t_upper.repeat(2, 1)
                mask_add_noise = mask_t_upper & ~noise_added

                z = torch.where(mask_add_noise[:, None, :, None, None], x_noise, x0)
                noise_added = mask_t_upper

            # classifier-free guidance
            z_in = torch.cat([z, z], 0)
            t = torch.cat([t, t], 0)

            # pred = model(z_in, t, **model_args).chunk(2, dim=1)[0]
            output = model(z_in, t, all_timesteps, **model_args)

            pred = output.chunk(2, dim=1)[0]
            pred_cond, pred_uncond = pred.chunk(2, dim=0)
            v_pred = pred_uncond + guidance_scale * (pred_cond - pred_uncond)

            # update z
            dt = timesteps[i] - timesteps[i + 1] if i < len(timesteps) - 1 else timesteps[i]
            dt = dt / self.num_timesteps
            z = z + v_pred * dt[:, None, None, None, None]

            if mask is not None:
                z = torch.where(mask_t_upper[:, None, :, None, None], z, x0)

        return z

    def training_losses(self, model, x_start, model_kwargs=None, noise=None, mask=None, weights=None, t=None):
        return self.scheduler.training_losses(model, x_start, model_kwargs, noise, mask, weights, t)