|
import os |
|
|
|
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs") |
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" |
|
|
|
import uuid |
|
|
|
import GPUtil |
|
import gradio as gr |
|
import psutil |
|
import spaces |
|
|
|
from videosys import CogVideoXConfig, CogVideoXPABConfig, VideoSysEngine |
|
|
|
|
|
def load_model(model_name, enable_video_sys=False, pab_threshold=[100, 850], pab_range=2): |
|
pab_config = CogVideoXPABConfig(spatial_threshold=pab_threshold, spatial_range=pab_range) |
|
config = CogVideoXConfig(model_name, enable_pab=enable_video_sys, pab_config=pab_config) |
|
engine = VideoSysEngine(config) |
|
return engine |
|
|
|
|
|
def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0): |
|
video = engine.generate(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0] |
|
|
|
unique_filename = f"{uuid.uuid4().hex}.mp4" |
|
output_path = os.path.join("./.tmp_outputs", unique_filename) |
|
|
|
engine.save_video(video, output_path) |
|
return output_path |
|
|
|
|
|
def get_server_status(): |
|
cpu_percent = psutil.cpu_percent() |
|
memory = psutil.virtual_memory() |
|
disk = psutil.disk_usage("/") |
|
gpus = GPUtil.getGPUs() |
|
gpu_info = [] |
|
for gpu in gpus: |
|
gpu_info.append( |
|
{ |
|
"id": gpu.id, |
|
"name": gpu.name, |
|
"load": f"{gpu.load*100:.1f}%", |
|
"memory_used": f"{gpu.memoryUsed}MB", |
|
"memory_total": f"{gpu.memoryTotal}MB", |
|
} |
|
) |
|
|
|
return {"cpu": f"{cpu_percent}%", "memory": f"{memory.percent}%", "disk": f"{disk.percent}%", "gpu": gpu_info} |
|
|
|
|
|
@spaces.GPU(duration=540) |
|
def generate_vanilla(model_name, prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)): |
|
engine = load_model(model_name) |
|
video_path = generate(engine, prompt, num_inference_steps, guidance_scale) |
|
return video_path |
|
|
|
|
|
@spaces.GPU(duration=400) |
|
def generate_vs( |
|
model_name, |
|
prompt, |
|
num_inference_steps, |
|
guidance_scale, |
|
threshold_start, |
|
threshold_end, |
|
gap, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
threshold = [int(threshold_end), int(threshold_start)] |
|
gap = int(gap) |
|
engine = load_model(model_name, enable_video_sys=True, pab_threshold=threshold, pab_range=gap) |
|
video_path = generate(engine, prompt, num_inference_steps, guidance_scale) |
|
return video_path |
|
|
|
|
|
def get_server_status(): |
|
cpu_percent = psutil.cpu_percent() |
|
memory = psutil.virtual_memory() |
|
disk = psutil.disk_usage("/") |
|
try: |
|
gpus = GPUtil.getGPUs() |
|
if gpus: |
|
gpu = gpus[0] |
|
gpu_memory = f"{gpu.memoryUsed}/{gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)" |
|
else: |
|
gpu_memory = "No GPU found" |
|
except: |
|
gpu_memory = "GPU information unavailable" |
|
|
|
return { |
|
"cpu": f"{cpu_percent}%", |
|
"memory": f"{memory.percent}%", |
|
"disk": f"{disk.percent}%", |
|
"gpu_memory": gpu_memory, |
|
} |
|
|
|
|
|
def update_server_status(): |
|
status = get_server_status() |
|
return (status["cpu"], status["memory"], status["disk"], status["gpu_memory"]) |
|
|
|
|
|
css = """ |
|
body { |
|
font-family: Arial, sans-serif; |
|
line-height: 1.6; |
|
color: #333; |
|
margin: 0 auto; |
|
padding: 20px; |
|
} |
|
|
|
|
|
.container { |
|
display: flex; |
|
flex-direction: column; |
|
gap: 10px; |
|
} |
|
|
|
.row { |
|
display: flex; |
|
flex-wrap: wrap; |
|
gap: 10px; |
|
} |
|
|
|
.column { |
|
flex: 1; |
|
min-width: 0; |
|
} |
|
|
|
.video-output { |
|
width: 100%; |
|
max-width: 720px; |
|
height: auto; |
|
margin: 0 auto; |
|
} |
|
|
|
.server-status { |
|
margin-top: 5px; |
|
padding: 5px; |
|
font-size: 0.8em; |
|
} |
|
.server-status h4 { |
|
margin: 0 0 3px 0; |
|
font-size: 0.9em; |
|
} |
|
.server-status .row { |
|
margin-bottom: 2px; |
|
} |
|
.server-status .textbox { |
|
min-height: unset !important; |
|
} |
|
.server-status .textbox input { |
|
padding: 1px 5px !important; |
|
height: 20px !important; |
|
font-size: 0.9em !important; |
|
} |
|
.server-status .textbox label { |
|
margin-bottom: 0 !important; |
|
font-size: 0.9em !important; |
|
line-height: 1.2 !important; |
|
} |
|
.server-status .textbox { |
|
gap: 0 !important; |
|
} |
|
.server-status .textbox input { |
|
margin-top: -2px !important; |
|
} |
|
|
|
@media (max-width: 768px) { |
|
.row { |
|
flex-direction: column; |
|
} |
|
.column { |
|
width: 100%; |
|
} |
|
} |
|
.video-output { |
|
width: 100%; |
|
height: auto; |
|
} |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;"> |
|
VideoSys for CogVideoX🤗 |
|
</div> |
|
<div style="text-align: center; font-size: 15px;"> |
|
🌐 Github: <a href="https://github.com/NUS-HPC-AI-Lab/VideoSys">https://github.com/NUS-HPC-AI-Lab/VideoSys</a><br> |
|
|
|
⚠️ This demo is for academic research and experiential use only. |
|
Users should strictly adhere to local laws and ethics.<br> |
|
|
|
💡 This demo only demonstrates single-device inference. To experience the full power of VideoSys, please deploy it with multiple devices.<br><br> |
|
</div> |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", value="Sunset over the sea.", lines=3) |
|
|
|
with gr.Column(): |
|
gr.Markdown("**Generation Parameters**<br>") |
|
with gr.Row(): |
|
model_name = gr.Radio( |
|
["THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b"], label="Model Type", value="THUDM/CogVideoX-2b" |
|
) |
|
with gr.Row(): |
|
num_inference_steps = gr.Number(label="Inference Steps", value=50) |
|
guidance_scale = gr.Number(label="Guidance Scale", value=6.0) |
|
with gr.Row(): |
|
pab_range = gr.Number( |
|
label="PAB Broadcast Range", value=2, precision=0, info="Broadcast timesteps range." |
|
) |
|
pab_threshold_start = gr.Number(label="PAB Start Timestep", value=850, info="Start from step 1000.") |
|
pab_threshold_end = gr.Number(label="PAB End Timestep", value=100, info="End at step 0.") |
|
with gr.Row(): |
|
generate_button_vs = gr.Button("⚡️ Generate Video with VideoSys (Faster)") |
|
generate_button = gr.Button("🎬 Generate Video (Original)") |
|
with gr.Column(elem_classes="server-status"): |
|
gr.Markdown("#### Server Status") |
|
|
|
with gr.Row(): |
|
cpu_status = gr.Textbox(label="CPU", scale=1) |
|
memory_status = gr.Textbox(label="Memory", scale=1) |
|
|
|
with gr.Row(): |
|
disk_status = gr.Textbox(label="Disk", scale=1) |
|
gpu_status = gr.Textbox(label="GPU Memory", scale=1) |
|
|
|
with gr.Row(): |
|
refresh_button = gr.Button("Refresh") |
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
video_output_vs = gr.Video(label="CogVideoX with VideoSys", width=720, height=480) |
|
with gr.Row(): |
|
video_output = gr.Video(label="CogVideoX", width=720, height=480) |
|
|
|
generate_button.click( |
|
generate_vanilla, |
|
inputs=[model_name, prompt, num_inference_steps, guidance_scale], |
|
outputs=[video_output], |
|
concurrency_id="gen", |
|
concurrency_limit=1, |
|
) |
|
|
|
generate_button_vs.click( |
|
generate_vs, |
|
inputs=[ |
|
model_name, |
|
prompt, |
|
num_inference_steps, |
|
guidance_scale, |
|
pab_threshold_start, |
|
pab_threshold_end, |
|
pab_range, |
|
], |
|
outputs=[video_output_vs], |
|
concurrency_id="gen", |
|
concurrency_limit=1, |
|
) |
|
|
|
refresh_button.click(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status]) |
|
demo.load(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status], every=1) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=10, default_concurrency_limit=1) |
|
demo.launch() |
|
|