|
from dataclasses import dataclass |
|
from typing import Iterable, List, Optional, Sequence, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
|
|
from videosys.modules.layers import LlamaRMSNorm |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = LlamaRMSNorm, |
|
enable_flashattn: bool = False, |
|
rope=None, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim**-0.5 |
|
self.enable_flashattn = enable_flashattn |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.rope = False |
|
if rope is not None: |
|
self.rope = True |
|
self.rotary_emb = rope |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, N, C = x.shape |
|
|
|
qkv = self.qkv(x) |
|
qkv = qkv.view(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 1, 3, 4) |
|
q, k, v = qkv.unbind(0) |
|
if self.rope: |
|
q = self.rotary_emb(q) |
|
k = self.rotary_emb(k) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
if self.enable_flashattn: |
|
from flash_attn import flash_attn_func |
|
|
|
x = flash_attn_func( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
softmax_scale=self.scale, |
|
) |
|
else: |
|
q, k, v = map(lambda t: t.permute(0, 2, 1, 3), (q, k, v)) |
|
x = F.scaled_dot_product_attention( |
|
q, k, v, scale=self.scale, dropout_p=self.attn_drop.p if self.training else 0.0 |
|
) |
|
|
|
x_output_shape = (B, N, C) |
|
if not self.enable_flashattn: |
|
x = x.transpose(1, 2) |
|
x = x.reshape(x_output_shape) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class MultiHeadCrossAttention(nn.Module): |
|
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, enable_flashattn=False): |
|
super(MultiHeadCrossAttention, self).__init__() |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
self.enable_flashattn = enable_flashattn |
|
|
|
self.q_linear = nn.Linear(d_model, d_model) |
|
self.kv_linear = nn.Linear(d_model, d_model * 2) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(d_model, d_model) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.last_out = None |
|
self.count = 0 |
|
|
|
def forward(self, x, cond, mask=None, timestep=None): |
|
|
|
B, N, C = x.shape |
|
|
|
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) |
|
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) |
|
k, v = kv.unbind(2) |
|
x = self.flash_attn_impl(q, k, v, mask, B, N, C) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def flash_attn_impl(self, q, k, v, mask, B, N, C): |
|
from flash_attn import flash_attn_varlen_func |
|
|
|
q_seqinfo = _SeqLenInfo.from_seqlens([N] * B) |
|
k_seqinfo = _SeqLenInfo.from_seqlens(mask) |
|
|
|
x = flash_attn_varlen_func( |
|
q.view(-1, self.num_heads, self.head_dim), |
|
k.view(-1, self.num_heads, self.head_dim), |
|
v.view(-1, self.num_heads, self.head_dim), |
|
cu_seqlens_q=q_seqinfo.seqstart.cuda(), |
|
cu_seqlens_k=k_seqinfo.seqstart.cuda(), |
|
max_seqlen_q=q_seqinfo.max_seqlen, |
|
max_seqlen_k=k_seqinfo.max_seqlen, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
) |
|
x = x.view(B, N, C) |
|
return x |
|
|
|
def torch_impl(self, q, k, v, mask, B, N, C): |
|
q = q.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2) |
|
k = k.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2) |
|
v = v.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
attn_mask = torch.zeros(B, N, k.shape[2], dtype=torch.float32, device=q.device) |
|
for i, m in enumerate(mask): |
|
attn_mask[i, :, m:] = -1e8 |
|
|
|
scale = 1 / q.shape[-1] ** 0.5 |
|
q = q * scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.to(torch.float32) |
|
if mask is not None: |
|
attn = attn + attn_mask.unsqueeze(1) |
|
attn = attn.softmax(-1) |
|
attn = attn.to(v.dtype) |
|
out = attn @ v |
|
|
|
x = out.transpose(1, 2).contiguous().view(B, N, C) |
|
return x |
|
|
|
|
|
@dataclass |
|
class _SeqLenInfo: |
|
""" |
|
copied from xformers |
|
|
|
(Internal) Represents the division of a dimension into blocks. |
|
For example, to represents a dimension of length 7 divided into |
|
three blocks of lengths 2, 3 and 2, use `from_seqlength([2, 3, 2])`. |
|
The members will be: |
|
max_seqlen: 3 |
|
min_seqlen: 2 |
|
seqstart_py: [0, 2, 5, 7] |
|
seqstart: torch.IntTensor([0, 2, 5, 7]) |
|
""" |
|
|
|
seqstart: torch.Tensor |
|
max_seqlen: int |
|
min_seqlen: int |
|
seqstart_py: List[int] |
|
|
|
def to(self, device: torch.device) -> None: |
|
self.seqstart = self.seqstart.to(device, non_blocking=True) |
|
|
|
def intervals(self) -> Iterable[Tuple[int, int]]: |
|
yield from zip(self.seqstart_py, self.seqstart_py[1:]) |
|
|
|
@classmethod |
|
def from_seqlens(cls, seqlens: Iterable[int]) -> "_SeqLenInfo": |
|
""" |
|
Input tensors are assumed to be in shape [B, M, *] |
|
""" |
|
assert not isinstance(seqlens, torch.Tensor) |
|
seqstart_py = [0] |
|
max_seqlen = -1 |
|
min_seqlen = -1 |
|
for seqlen in seqlens: |
|
min_seqlen = min(min_seqlen, seqlen) if min_seqlen != -1 else seqlen |
|
max_seqlen = max(max_seqlen, seqlen) |
|
seqstart_py.append(seqstart_py[len(seqstart_py) - 1] + seqlen) |
|
seqstart = torch.tensor(seqstart_py, dtype=torch.int32) |
|
return cls( |
|
max_seqlen=max_seqlen, |
|
min_seqlen=min_seqlen, |
|
seqstart=seqstart, |
|
seqstart_py=seqstart_py, |
|
) |
|
|
|
def split(self, x: torch.Tensor, batch_sizes: Optional[Sequence[int]] = None) -> List[torch.Tensor]: |
|
if self.seqstart_py[-1] != x.shape[1] or x.shape[0] != 1: |
|
raise ValueError( |
|
f"Invalid `torch.Tensor` of shape {x.shape}, expected format " |
|
f"(B, M, *) with B=1 and M={self.seqstart_py[-1]}\n" |
|
f" seqstart: {self.seqstart_py}" |
|
) |
|
if batch_sizes is None: |
|
batch_sizes = [1] * (len(self.seqstart_py) - 1) |
|
split_chunks = [] |
|
it = 0 |
|
for batch_size in batch_sizes: |
|
split_chunks.append(self.seqstart_py[it + batch_size] - self.seqstart_py[it]) |
|
it += batch_size |
|
return [ |
|
tensor.reshape([bs, -1, *tensor.shape[2:]]) for bs, tensor in zip(batch_sizes, x.split(split_chunks, dim=1)) |
|
] |
|
|