# Adapted from Latte # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # Latte: https://github.com/Vchitect/Latte # -------------------------------------------------------- import html import inspect import re import urllib.parse as ul from typing import Callable, List, Optional, Tuple, Union import einops import ftfy import torch import torch.distributed as dist import tqdm from bs4 import BeautifulSoup from diffusers.image_processor import VaeImageProcessor from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder from diffusers.schedulers import DDIMScheduler from diffusers.utils.torch_utils import randn_tensor from transformers import T5EncoderModel, T5Tokenizer from videosys.core.pab_mgr import PABConfig, set_pab_manager, update_steps from videosys.core.pipeline import VideoSysPipeline, VideoSysPipelineOutput from videosys.models.transformers.latte_transformer_3d import LatteT2V from videosys.utils.logging import logger from videosys.utils.utils import save_video class LattePABConfig(PABConfig): def __init__( self, steps: int = 50, spatial_broadcast: bool = True, spatial_threshold: list = [100, 800], spatial_range: int = 2, temporal_broadcast: bool = True, temporal_threshold: list = [100, 800], temporal_range: int = 3, cross_broadcast: bool = True, cross_threshold: list = [100, 800], cross_range: int = 6, mlp_broadcast: bool = True, mlp_spatial_broadcast_config: dict = { 720: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, 640: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, 560: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, 480: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, 400: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, }, mlp_temporal_broadcast_config: dict = { 720: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, 640: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, 560: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, 480: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, 400: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, }, ): super().__init__( steps=steps, spatial_broadcast=spatial_broadcast, spatial_threshold=spatial_threshold, spatial_range=spatial_range, temporal_broadcast=temporal_broadcast, temporal_threshold=temporal_threshold, temporal_range=temporal_range, cross_broadcast=cross_broadcast, cross_threshold=cross_threshold, cross_range=cross_range, mlp_broadcast=mlp_broadcast, mlp_spatial_broadcast_config=mlp_spatial_broadcast_config, mlp_temporal_broadcast_config=mlp_temporal_broadcast_config, ) class LatteConfig: """ This config is to instantiate a `LattePipeline` class for video generation. To be specific, this config will be passed to engine by `VideoSysEngine(config)`. In the engine, it will be used to instantiate the corresponding pipeline class. And the engine will call the `generate` function of the pipeline to generate the video. If you want to explore the detail of generation, please refer to the pipeline class below. Args: model_path (str): A path to the pretrained pipeline. Defaults to "maxin-cn/Latte-1". num_gpus (int): The number of GPUs to use. Defaults to 1. enable_vae_temporal_decoder (bool): Whether to enable VAE Temporal Decoder. Defaults to True. beta_start (float): The initial value of beta for DDIM. Defaults to 0.0001. beta_end (float): The final value of beta for DDIM. Defaults to 0.02. beta_schedule (str): The schedule of beta for DDIM. Defaults to "linear". variance_type (str): The type of variance for DDIM. Defaults to "learned_range". enable_pab (bool): Whether to enable Pyramid Attention Broadcast. Defaults to False. pab_config (CogVideoXPABConfig): The configuration for Pyramid Attention Broadcast. Defaults to `LattePABConfig()`. Examples: ```python from videosys import LatteConfig, VideoSysEngine # change num_gpus for multi-gpu inference config = LatteConfig("maxin-cn/Latte-1", num_gpus=1) engine = VideoSysEngine(config) prompt = "Sunset over the sea." # video size is fixed to 16 frames, 512x512. video = engine.generate( prompt=prompt, guidance_scale=7.5, num_inference_steps=50, ).video[0] engine.save_video(video, f"./outputs/{prompt}.mp4") ``` """ def __init__( self, model_path: str = "maxin-cn/Latte-1", # ======= distributed ======= num_gpus: int = 1, # ======= vae ======== enable_vae_temporal_decoder: bool = True, # ======= scheduler ======== beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", variance_type: str = "learned_range", # ======= pab ======== enable_pab: bool = False, pab_config: PABConfig = LattePABConfig(), ): self.model_path = model_path self.pipeline_cls = LattePipeline # ======= distributed ======= self.num_gpus = num_gpus # ======= vae ======== self.enable_vae_temporal_decoder = enable_vae_temporal_decoder # ======= scheduler ======== self.beta_start = beta_start self.beta_end = beta_end self.beta_schedule = beta_schedule self.variance_type = variance_type # ======= pab ======== self.enable_pab = enable_pab self.pab_config = pab_config class LattePipeline(VideoSysPipeline): r""" Pipeline for text-to-image generation using PixArt-Alpha. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. PixArt-Alpha uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`Transformer2DModel`]): A text conditioned `Transformer2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ bad_punct_regex = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" ) # noqa _optional_components = ["tokenizer", "text_encoder"] model_cpu_offload_seq = "text_encoder->transformer->vae" def __init__( self, config: LatteConfig, tokenizer: Optional[T5Tokenizer] = None, text_encoder: Optional[T5EncoderModel] = None, vae: Optional[AutoencoderKL] = None, transformer: Optional[LatteT2V] = None, scheduler: Optional[DDIMScheduler] = None, device: torch.device = torch.device("cuda"), dtype: torch.dtype = torch.float16, ): super().__init__() self._config = config # initialize the model if not provided if transformer is None: transformer = LatteT2V.from_pretrained(config.model_path, subfolder="transformer", video_length=16).to( dtype=dtype ) if vae is None: if config.enable_vae_temporal_decoder: vae = AutoencoderKLTemporalDecoder.from_pretrained( config.model_path, subfolder="vae_temporal_decoder", torch_dtype=dtype ) else: vae = AutoencoderKL.from_pretrained(config.model_path, subfolder="vae", torch_dtype=dtype) if tokenizer is None: tokenizer = T5Tokenizer.from_pretrained(config.model_path, subfolder="tokenizer") if text_encoder is None: text_encoder = T5EncoderModel.from_pretrained( config.model_path, subfolder="text_encoder", torch_dtype=dtype ) if scheduler is None: scheduler = DDIMScheduler.from_pretrained( config.model_path, subfolder="scheduler", beta_start=config.beta_start, beta_end=config.beta_end, beta_schedule=config.beta_schedule, variance_type=config.variance_type, clip_sample=False, ) # pab if config.enable_pab: set_pab_manager(config.pab_config) # set eval and device self.set_eval_and_device(device, text_encoder, vae, transformer) self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py def mask_text_embeddings(self, emb, mask): if emb.shape[0] == 1: keep_index = mask.sum().item() return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096 else: masked_feature = emb * mask[:, None, :, None] # 1 120 4096 return masked_feature, emb.shape[2] # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: str = "", num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, clean_caption: bool = False, mask_feature: bool = True, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For PixArt-Alpha, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" string. clean_caption (bool, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. mask_feature: (bool, defaults to `True`): If `True`, the function will mask the text embeddings. """ embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # See Section 3.1. of the paper. max_length = 120 if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {max_length} tokens: {removed_text}" ) attention_mask = text_inputs.attention_mask.to(device) prompt_embeds_attention_mask = attention_mask prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds_attention_mask = torch.ones_like(prompt_embeds) if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1) prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens = [negative_prompt] * batch_size uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes else: negative_prompt_embeds = None # Perform additional masking. if mask_feature and not embeds_initially_provided: prompt_embeds = prompt_embeds.unsqueeze(1) masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask) masked_prompt_embeds = masked_prompt_embeds.squeeze(1) masked_negative_prompt_embeds = ( negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None ) # import torch.nn.functional as F # padding = (0, 0, 0, 113) # (左, 右, 下, 上) # masked_prompt_embeds_ = F.pad(masked_prompt_embeds, padding, "constant", 0) # masked_negative_prompt_embeds_ = F.pad(masked_negative_prompt_embeds, padding, "constant", 0) # print(masked_prompt_embeds == masked_prompt_embeds_[:, :masked_negative_prompt_embeds.shape[1], ...]) return masked_prompt_embeds, masked_negative_prompt_embeds # return masked_prompt_embeds_, masked_negative_prompt_embeds_ return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt, callback_steps, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @ caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # " caption = re.sub(r""?", "", caption) # & caption = re.sub(r"&", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None ): shape = ( batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def generate( self, prompt: str = None, negative_prompt: str = "", num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, clean_caption: bool = True, mask_feature: bool = True, enable_temporal_attentions: bool = True, verbose: bool = True, ) -> Union[VideoSysPipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Latte can only generate video of 16 frames 512x512. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked. enable_temporal_attentions (`bool`, defaults to `True`): If `True`, the model will use temporal attentions to generate the video. verbose (`bool`, *optional*, defaults to `True`): Whether to print progress bars and other information during inference. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ # 1. Check inputs. Raise error if not correct video_length = 16 height = 512 width = 512 update_steps(num_inference_steps) self.check_inputs(prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds) # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self.text_encoder.device or self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption, mask_feature=mask_feature, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, video_length, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Prepare micro-conditions. added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if self.transformer.config.sample_size == 128: resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) progress_wrap = tqdm.tqdm if verbose and dist.get_rank() == 0 else (lambda x: x) for i, t in progress_wrap(list(enumerate(timesteps))): latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) current_timestep = t if not torch.is_tensor(current_timestep): # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( latent_model_input, all_timesteps=timesteps, encoder_hidden_states=prompt_embeds, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, enable_temporal_attentions=enable_temporal_attentions, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: noise_pred = noise_pred.chunk(2, dim=1)[0] else: noise_pred = noise_pred # compute previous image: x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latents": if latents.shape[2] == 1: # image video = self.decode_latents_image(latents) else: # video if self._config.enable_vae_temporal_decoder: video = self.decode_latents_with_temporal_decoder(latents) else: video = self.decode_latents(latents) else: video = latents return VideoSysPipelineOutput(video=video) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return VideoSysPipelineOutput(video=video) def decode_latents_image(self, latents): video_length = latents.shape[2] latents = 1 / self.vae.config.scaling_factor * latents latents = einops.rearrange(latents, "b c f h w -> (b f) c h w") video = [] for frame_idx in range(latents.shape[0]): video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) video = torch.cat(video) video = einops.rearrange(video, "(b f) c h w -> b f c h w", f=video_length) video = (video / 2.0 + 0.5).clamp(0, 1) return video def decode_latents(self, latents): video_length = latents.shape[2] latents = 1 / self.vae.config.scaling_factor * latents latents = einops.rearrange(latents, "b c f h w -> (b f) c h w") video = [] for frame_idx in range(latents.shape[0]): video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) video = torch.cat(video) video = einops.rearrange(video, "(b f) c h w -> b f h w c", f=video_length) video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().contiguous() # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 return video def decode_latents_with_temporal_decoder(self, latents): video_length = latents.shape[2] latents = 1 / self.vae.config.scaling_factor * latents latents = einops.rearrange(latents, "b c f h w -> (b f) c h w") video = [] decode_chunk_size = 14 for frame_idx in range(0, latents.shape[0], decode_chunk_size): num_frames_in = latents[frame_idx : frame_idx + decode_chunk_size].shape[0] decode_kwargs = {} decode_kwargs["num_frames"] = num_frames_in video.append(self.vae.decode(latents[frame_idx : frame_idx + decode_chunk_size], **decode_kwargs).sample) video = torch.cat(video) video = einops.rearrange(video, "(b f) c h w -> b f h w c", f=video_length) video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().contiguous() # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 return video def save_video(self, video, output_path): save_video(video, output_path, fps=8)