Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,361 Bytes
176edce f8844a3 176edce 0e7941e 176edce 343fdaf 176edce 343fdaf f8844a3 176edce 343fdaf 176edce 343fdaf 0e7941e de7fb8a f8844a3 0e7941e f8844a3 0e7941e f8844a3 0e7941e f8844a3 0e7941e f8844a3 de7fb8a 0e7941e f8844a3 0e7941e 7b9b23e 0e7941e 3ec2621 0e7941e 3ec2621 0e7941e f8844a3 0e7941e f8844a3 0e7941e 3ec2621 016778b 1b0733f f8844a3 3ec2621 aba7c6b 3ec2621 343fdaf 176edce f8844a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# Custom CSS
css = """
footer {display: none !important}
.gradio-container {max-width: 1200px; margin: auto;}
.contain {background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px;}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
"""
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed (for reproducibility)",
value=3413,
precision=0
)
generate_btn = gr.Button(
"✨ Generate Image",
elem_classes=["generate-btn"]
)
gr.HTML("""
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
<h4 style="margin: 0 0 0.5em 0;">Tips for best results:</h4>
<ul style="margin: 0; padding-left: 1.2em;">
<li>Be specific in your descriptions</li>
<li>Include details about style, lighting, and mood</li>
<li>Experiment with different guidance scales</li>
</ul>
</div>
""")
with gr.Column(scale=4):
output = gr.Image(label="Generated Image")
@spaces.GPU
def process_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
generate_btn.click(
process_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
)
if __name__ == "__main__":
demo.launch() |