import spaces import argparse import os import time from os import path from safetensors.torch import load_file from huggingface_hub import hf_hub_download import gradio as gr import torch from diffusers import FluxPipeline # Setup and initialization code cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path torch.backends.cuda.matmul.allow_tf32 = True class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") # Model initialization if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) # Custom CSS css = """ footer {display: none !important} .gradio-container {max-width: 1200px; margin: auto;} .contain {background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px;} .generate-btn { background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; border: none !important; color: white !important; } .generate-btn:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(0,0,0,0.2); } .title { text-align: center; font-size: 2.5em; font-weight: bold; margin-bottom: 1em; background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } """ # Create Gradio interface with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML('