flxloraexp / oldbackups
ginipick's picture
Rename app-backup.py to oldbackups
47f1c9a verified
raw
history blame
13 kB
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
from transformers import pipeline
# ๋ฒˆ์—ญ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# ํ”„๋กฌํ”„ํŠธ ์ฒ˜๋ฆฌ ํ•จ์ˆ˜ ์ถ”๊ฐ€
def process_prompt(prompt):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
translated = translator(prompt)[0]['translation_text']
return prompt, translated
return prompt, prompt
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"{selected_lora['title']}๋ฅผ ์œ„ํ•œ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”"
lora_repo = selected_lora["repo"]
updated_text = f"### ์„ ํƒ๋จ: [{lora_repo}](https://huggingface.co/{lora_repo}) โœจ"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("์ด๋ฏธ์ง€ ์ƒ์„ฑ"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=good_vae,
):
yield img
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("์ง„ํ–‰ํ•˜๊ธฐ ์ „์— LoRA๋ฅผ ์„ ํƒํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.")
original_prompt, english_prompt = process_prompt(prompt)
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {english_prompt}"
else:
prompt_mash = f"{english_prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {english_prompt}"
else:
prompt_mash = english_prompt
with calculateDuration("LoRA ์–ธ๋กœ๋“œ"):
pipe.unload_lora_weights()
# Load LoRA weights
with calculateDuration(f"{selected_lora['title']}์˜ LoRA ๊ฐ€์ค‘์น˜ ๋กœ๋“œ"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("์‹œ๋“œ ๋ฌด์ž‘์œ„ํ™”"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter+=1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True), original_prompt, english_prompt
yield final_image, seed, gr.update(value=progress_bar, visible=False), original_prompt, english_prompt
def get_huggingface_safetensors(link):
split_link = link.split("/")
if(len(split_link) == 2):
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if(file.endswith(".safetensors")):
safetensors_name = file.split("/")[-1]
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
if(link.startswith("https://")):
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if(custom_lora):
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if(not existing_item_index):
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="ํ”„๋กฌํ”„ํŠธ", lines=1, placeholder="LoRA๋ฅผ ์„ ํƒํ•œ ํ›„ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š” (ํ•œ๊ธ€ ๋˜๋Š” ์˜์–ด)")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("์ƒ์„ฑ", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA ๊ฐค๋Ÿฌ๋ฆฌ",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Group():
custom_lora = gr.Textbox(label="์ปค์Šคํ…€ LoRA", info="LoRA Hugging Face ๊ฒฝ๋กœ", placeholder="multimodalart/vintage-ads-flux")
gr.Markdown("[FLUX LoRA ๋ชฉ๋ก ํ™•์ธ](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("์ปค์Šคํ…€ LoRA ์ œ๊ฑฐ", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress",visible=False)
result = gr.Image(label="์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€")
original_prompt_display = gr.Textbox(label="์›๋ณธ ํ”„๋กฌํ”„ํŠธ")
english_prompt_display = gr.Textbox(label="์˜์–ด ํ”„๋กฌํ”„ํŠธ")
with gr.Row():
with gr.Accordion("๊ณ ๊ธ‰ ์„ค์ •", open=False):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG ์Šค์ผ€์ผ", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="์Šคํ…", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="๋„ˆ๋น„", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="๋†’์ด", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="์‹œ๋“œ ๋ฌด์ž‘์œ„ํ™”")
seed = gr.Slider(label="์‹œ๋“œ", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA ์Šค์ผ€์ผ", minimum=0, maximum=3, step=0.01, value=0.95)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed, progress_bar, original_prompt_display, english_prompt_display]
)
app.queue()
app.launch()