File size: 16,239 Bytes
a64b7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import torch
from torch import nn as nn
from torch.nn import functional as F
from basicsr.utils.registry import ARCH_REGISTRY
from .arch_util import DCNv2Pack, ResidualBlockNoBN, make_layer
class PCDAlignment(nn.Module):
"""Alignment module using Pyramid, Cascading and Deformable convolution
(PCD). It is used in EDVR.
``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks``
Args:
num_feat (int): Channel number of middle features. Default: 64.
deformable_groups (int): Deformable groups. Defaults: 8.
"""
def __init__(self, num_feat=64, deformable_groups=8):
super(PCDAlignment, self).__init__()
# Pyramid has three levels:
# L3: level 3, 1/4 spatial size
# L2: level 2, 1/2 spatial size
# L1: level 1, original spatial size
self.offset_conv1 = nn.ModuleDict()
self.offset_conv2 = nn.ModuleDict()
self.offset_conv3 = nn.ModuleDict()
self.dcn_pack = nn.ModuleDict()
self.feat_conv = nn.ModuleDict()
# Pyramids
for i in range(3, 0, -1):
level = f'l{i}'
self.offset_conv1[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
if i == 3:
self.offset_conv2[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
else:
self.offset_conv2[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
self.offset_conv3[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.dcn_pack[level] = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
if i < 3:
self.feat_conv[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
# Cascading dcn
self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.cas_dcnpack = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
def forward(self, nbr_feat_l, ref_feat_l):
"""Align neighboring frame features to the reference frame features.
Args:
nbr_feat_l (list[Tensor]): Neighboring feature list. It
contains three pyramid levels (L1, L2, L3),
each with shape (b, c, h, w).
ref_feat_l (list[Tensor]): Reference feature list. It
contains three pyramid levels (L1, L2, L3),
each with shape (b, c, h, w).
Returns:
Tensor: Aligned features.
"""
# Pyramids
upsampled_offset, upsampled_feat = None, None
for i in range(3, 0, -1):
level = f'l{i}'
offset = torch.cat([nbr_feat_l[i - 1], ref_feat_l[i - 1]], dim=1)
offset = self.lrelu(self.offset_conv1[level](offset))
if i == 3:
offset = self.lrelu(self.offset_conv2[level](offset))
else:
offset = self.lrelu(self.offset_conv2[level](torch.cat([offset, upsampled_offset], dim=1)))
offset = self.lrelu(self.offset_conv3[level](offset))
feat = self.dcn_pack[level](nbr_feat_l[i - 1], offset)
if i < 3:
feat = self.feat_conv[level](torch.cat([feat, upsampled_feat], dim=1))
if i > 1:
feat = self.lrelu(feat)
if i > 1: # upsample offset and features
# x2: when we upsample the offset, we should also enlarge
# the magnitude.
upsampled_offset = self.upsample(offset) * 2
upsampled_feat = self.upsample(feat)
# Cascading
offset = torch.cat([feat, ref_feat_l[0]], dim=1)
offset = self.lrelu(self.cas_offset_conv2(self.lrelu(self.cas_offset_conv1(offset))))
feat = self.lrelu(self.cas_dcnpack(feat, offset))
return feat
class TSAFusion(nn.Module):
"""Temporal Spatial Attention (TSA) fusion module.
Temporal: Calculate the correlation between center frame and
neighboring frames;
Spatial: It has 3 pyramid levels, the attention is similar to SFT.
(SFT: Recovering realistic texture in image super-resolution by deep
spatial feature transform.)
Args:
num_feat (int): Channel number of middle features. Default: 64.
num_frame (int): Number of frames. Default: 5.
center_frame_idx (int): The index of center frame. Default: 2.
"""
def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
super(TSAFusion, self).__init__()
self.center_frame_idx = center_frame_idx
# temporal attention (before fusion conv)
self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
# spatial attention (after fusion conv)
self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
def forward(self, aligned_feat):
"""
Args:
aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w).
Returns:
Tensor: Features after TSA with the shape (b, c, h, w).
"""
b, t, c, h, w = aligned_feat.size()
# temporal attention
embedding_ref = self.temporal_attn1(aligned_feat[:, self.center_frame_idx, :, :, :].clone())
embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w))
embedding = embedding.view(b, t, -1, h, w) # (b, t, c, h, w)
corr_l = [] # correlation list
for i in range(t):
emb_neighbor = embedding[:, i, :, :, :]
corr = torch.sum(emb_neighbor * embedding_ref, 1) # (b, h, w)
corr_l.append(corr.unsqueeze(1)) # (b, 1, h, w)
corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1)) # (b, t, h, w)
corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w)
corr_prob = corr_prob.contiguous().view(b, -1, h, w) # (b, t*c, h, w)
aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob
# fusion
feat = self.lrelu(self.feat_fusion(aligned_feat))
# spatial attention
attn = self.lrelu(self.spatial_attn1(aligned_feat))
attn_max = self.max_pool(attn)
attn_avg = self.avg_pool(attn)
attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1)))
# pyramid levels
attn_level = self.lrelu(self.spatial_attn_l1(attn))
attn_max = self.max_pool(attn_level)
attn_avg = self.avg_pool(attn_level)
attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1)))
attn_level = self.lrelu(self.spatial_attn_l3(attn_level))
attn_level = self.upsample(attn_level)
attn = self.lrelu(self.spatial_attn3(attn)) + attn_level
attn = self.lrelu(self.spatial_attn4(attn))
attn = self.upsample(attn)
attn = self.spatial_attn5(attn)
attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1(attn)))
attn = torch.sigmoid(attn)
# after initialization, * 2 makes (attn * 2) to be close to 1.
feat = feat * attn * 2 + attn_add
return feat
class PredeblurModule(nn.Module):
"""Pre-dublur module.
Args:
num_in_ch (int): Channel number of input image. Default: 3.
num_feat (int): Channel number of intermediate features. Default: 64.
hr_in (bool): Whether the input has high resolution. Default: False.
"""
def __init__(self, num_in_ch=3, num_feat=64, hr_in=False):
super(PredeblurModule, self).__init__()
self.hr_in = hr_in
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
if self.hr_in:
# downsample x4 by stride conv
self.stride_conv_hr1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
self.stride_conv_hr2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
# generate feature pyramid
self.stride_conv_l2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
self.stride_conv_l3 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
self.resblock_l3 = ResidualBlockNoBN(num_feat=num_feat)
self.resblock_l2_1 = ResidualBlockNoBN(num_feat=num_feat)
self.resblock_l2_2 = ResidualBlockNoBN(num_feat=num_feat)
self.resblock_l1 = nn.ModuleList([ResidualBlockNoBN(num_feat=num_feat) for i in range(5)])
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
def forward(self, x):
feat_l1 = self.lrelu(self.conv_first(x))
if self.hr_in:
feat_l1 = self.lrelu(self.stride_conv_hr1(feat_l1))
feat_l1 = self.lrelu(self.stride_conv_hr2(feat_l1))
# generate feature pyramid
feat_l2 = self.lrelu(self.stride_conv_l2(feat_l1))
feat_l3 = self.lrelu(self.stride_conv_l3(feat_l2))
feat_l3 = self.upsample(self.resblock_l3(feat_l3))
feat_l2 = self.resblock_l2_1(feat_l2) + feat_l3
feat_l2 = self.upsample(self.resblock_l2_2(feat_l2))
for i in range(2):
feat_l1 = self.resblock_l1[i](feat_l1)
feat_l1 = feat_l1 + feat_l2
for i in range(2, 5):
feat_l1 = self.resblock_l1[i](feat_l1)
return feat_l1
@ARCH_REGISTRY.register()
class EDVR(nn.Module):
"""EDVR network structure for video super-resolution.
Now only support X4 upsampling factor.
``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks``
Args:
num_in_ch (int): Channel number of input image. Default: 3.
num_out_ch (int): Channel number of output image. Default: 3.
num_feat (int): Channel number of intermediate features. Default: 64.
num_frame (int): Number of input frames. Default: 5.
deformable_groups (int): Deformable groups. Defaults: 8.
num_extract_block (int): Number of blocks for feature extraction.
Default: 5.
num_reconstruct_block (int): Number of blocks for reconstruction.
Default: 10.
center_frame_idx (int): The index of center frame. Frame counting from
0. Default: Middle of input frames.
hr_in (bool): Whether the input has high resolution. Default: False.
with_predeblur (bool): Whether has predeblur module.
Default: False.
with_tsa (bool): Whether has TSA module. Default: True.
"""
def __init__(self,
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_frame=5,
deformable_groups=8,
num_extract_block=5,
num_reconstruct_block=10,
center_frame_idx=None,
hr_in=False,
with_predeblur=False,
with_tsa=True):
super(EDVR, self).__init__()
if center_frame_idx is None:
self.center_frame_idx = num_frame // 2
else:
self.center_frame_idx = center_frame_idx
self.hr_in = hr_in
self.with_predeblur = with_predeblur
self.with_tsa = with_tsa
# extract features for each frame
if self.with_predeblur:
self.predeblur = PredeblurModule(num_feat=num_feat, hr_in=self.hr_in)
self.conv_1x1 = nn.Conv2d(num_feat, num_feat, 1, 1)
else:
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
# extract pyramid features
self.feature_extraction = make_layer(ResidualBlockNoBN, num_extract_block, num_feat=num_feat)
self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
# pcd and tsa module
self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=deformable_groups)
if self.with_tsa:
self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_frame, center_frame_idx=self.center_frame_idx)
else:
self.fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
# reconstruction
self.reconstruction = make_layer(ResidualBlockNoBN, num_reconstruct_block, num_feat=num_feat)
# upsample
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1)
self.pixel_shuffle = nn.PixelShuffle(2)
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
def forward(self, x):
b, t, c, h, w = x.size()
if self.hr_in:
assert h % 16 == 0 and w % 16 == 0, ('The height and width must be multiple of 16.')
else:
assert h % 4 == 0 and w % 4 == 0, ('The height and width must be multiple of 4.')
x_center = x[:, self.center_frame_idx, :, :, :].contiguous()
# extract features for each frame
# L1
if self.with_predeblur:
feat_l1 = self.conv_1x1(self.predeblur(x.view(-1, c, h, w)))
if self.hr_in:
h, w = h // 4, w // 4
else:
feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))
feat_l1 = self.feature_extraction(feat_l1)
# L2
feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
# L3
feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))
feat_l1 = feat_l1.view(b, t, -1, h, w)
feat_l2 = feat_l2.view(b, t, -1, h // 2, w // 2)
feat_l3 = feat_l3.view(b, t, -1, h // 4, w // 4)
# PCD alignment
ref_feat_l = [ # reference feature list
feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
feat_l3[:, self.center_frame_idx, :, :, :].clone()
]
aligned_feat = []
for i in range(t):
nbr_feat_l = [ # neighboring feature list
feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
]
aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w)
if not self.with_tsa:
aligned_feat = aligned_feat.view(b, -1, h, w)
feat = self.fusion(aligned_feat)
out = self.reconstruction(feat)
out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
out = self.lrelu(self.conv_hr(out))
out = self.conv_last(out)
if self.hr_in:
base = x_center
else:
base = F.interpolate(x_center, scale_factor=4, mode='bilinear', align_corners=False)
out += base
return out
|