|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
from .arch_util import DCNv2Pack, ResidualBlockNoBN, make_layer |
|
|
|
|
|
class PCDAlignment(nn.Module): |
|
"""Alignment module using Pyramid, Cascading and Deformable convolution |
|
(PCD). It is used in EDVR. |
|
|
|
``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks`` |
|
|
|
Args: |
|
num_feat (int): Channel number of middle features. Default: 64. |
|
deformable_groups (int): Deformable groups. Defaults: 8. |
|
""" |
|
|
|
def __init__(self, num_feat=64, deformable_groups=8): |
|
super(PCDAlignment, self).__init__() |
|
|
|
|
|
|
|
|
|
|
|
self.offset_conv1 = nn.ModuleDict() |
|
self.offset_conv2 = nn.ModuleDict() |
|
self.offset_conv3 = nn.ModuleDict() |
|
self.dcn_pack = nn.ModuleDict() |
|
self.feat_conv = nn.ModuleDict() |
|
|
|
|
|
for i in range(3, 0, -1): |
|
level = f'l{i}' |
|
self.offset_conv1[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1) |
|
if i == 3: |
|
self.offset_conv2[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
else: |
|
self.offset_conv2[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1) |
|
self.offset_conv3[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.dcn_pack[level] = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups) |
|
|
|
if i < 3: |
|
self.feat_conv[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1) |
|
|
|
|
|
self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1) |
|
self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.cas_dcnpack = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups) |
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) |
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
|
|
def forward(self, nbr_feat_l, ref_feat_l): |
|
"""Align neighboring frame features to the reference frame features. |
|
|
|
Args: |
|
nbr_feat_l (list[Tensor]): Neighboring feature list. It |
|
contains three pyramid levels (L1, L2, L3), |
|
each with shape (b, c, h, w). |
|
ref_feat_l (list[Tensor]): Reference feature list. It |
|
contains three pyramid levels (L1, L2, L3), |
|
each with shape (b, c, h, w). |
|
|
|
Returns: |
|
Tensor: Aligned features. |
|
""" |
|
|
|
upsampled_offset, upsampled_feat = None, None |
|
for i in range(3, 0, -1): |
|
level = f'l{i}' |
|
offset = torch.cat([nbr_feat_l[i - 1], ref_feat_l[i - 1]], dim=1) |
|
offset = self.lrelu(self.offset_conv1[level](offset)) |
|
if i == 3: |
|
offset = self.lrelu(self.offset_conv2[level](offset)) |
|
else: |
|
offset = self.lrelu(self.offset_conv2[level](torch.cat([offset, upsampled_offset], dim=1))) |
|
offset = self.lrelu(self.offset_conv3[level](offset)) |
|
|
|
feat = self.dcn_pack[level](nbr_feat_l[i - 1], offset) |
|
if i < 3: |
|
feat = self.feat_conv[level](torch.cat([feat, upsampled_feat], dim=1)) |
|
if i > 1: |
|
feat = self.lrelu(feat) |
|
|
|
if i > 1: |
|
|
|
|
|
upsampled_offset = self.upsample(offset) * 2 |
|
upsampled_feat = self.upsample(feat) |
|
|
|
|
|
offset = torch.cat([feat, ref_feat_l[0]], dim=1) |
|
offset = self.lrelu(self.cas_offset_conv2(self.lrelu(self.cas_offset_conv1(offset)))) |
|
feat = self.lrelu(self.cas_dcnpack(feat, offset)) |
|
return feat |
|
|
|
|
|
class TSAFusion(nn.Module): |
|
"""Temporal Spatial Attention (TSA) fusion module. |
|
|
|
Temporal: Calculate the correlation between center frame and |
|
neighboring frames; |
|
Spatial: It has 3 pyramid levels, the attention is similar to SFT. |
|
(SFT: Recovering realistic texture in image super-resolution by deep |
|
spatial feature transform.) |
|
|
|
Args: |
|
num_feat (int): Channel number of middle features. Default: 64. |
|
num_frame (int): Number of frames. Default: 5. |
|
center_frame_idx (int): The index of center frame. Default: 2. |
|
""" |
|
|
|
def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2): |
|
super(TSAFusion, self).__init__() |
|
self.center_frame_idx = center_frame_idx |
|
|
|
self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1) |
|
|
|
|
|
self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) |
|
self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1) |
|
self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1) |
|
self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1) |
|
self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1) |
|
self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1) |
|
self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1) |
|
self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1) |
|
self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1) |
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) |
|
|
|
def forward(self, aligned_feat): |
|
""" |
|
Args: |
|
aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w). |
|
|
|
Returns: |
|
Tensor: Features after TSA with the shape (b, c, h, w). |
|
""" |
|
b, t, c, h, w = aligned_feat.size() |
|
|
|
embedding_ref = self.temporal_attn1(aligned_feat[:, self.center_frame_idx, :, :, :].clone()) |
|
embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w)) |
|
embedding = embedding.view(b, t, -1, h, w) |
|
|
|
corr_l = [] |
|
for i in range(t): |
|
emb_neighbor = embedding[:, i, :, :, :] |
|
corr = torch.sum(emb_neighbor * embedding_ref, 1) |
|
corr_l.append(corr.unsqueeze(1)) |
|
corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1)) |
|
corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w) |
|
corr_prob = corr_prob.contiguous().view(b, -1, h, w) |
|
aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob |
|
|
|
|
|
feat = self.lrelu(self.feat_fusion(aligned_feat)) |
|
|
|
|
|
attn = self.lrelu(self.spatial_attn1(aligned_feat)) |
|
attn_max = self.max_pool(attn) |
|
attn_avg = self.avg_pool(attn) |
|
attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1))) |
|
|
|
attn_level = self.lrelu(self.spatial_attn_l1(attn)) |
|
attn_max = self.max_pool(attn_level) |
|
attn_avg = self.avg_pool(attn_level) |
|
attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1))) |
|
attn_level = self.lrelu(self.spatial_attn_l3(attn_level)) |
|
attn_level = self.upsample(attn_level) |
|
|
|
attn = self.lrelu(self.spatial_attn3(attn)) + attn_level |
|
attn = self.lrelu(self.spatial_attn4(attn)) |
|
attn = self.upsample(attn) |
|
attn = self.spatial_attn5(attn) |
|
attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1(attn))) |
|
attn = torch.sigmoid(attn) |
|
|
|
|
|
feat = feat * attn * 2 + attn_add |
|
return feat |
|
|
|
|
|
class PredeblurModule(nn.Module): |
|
"""Pre-dublur module. |
|
|
|
Args: |
|
num_in_ch (int): Channel number of input image. Default: 3. |
|
num_feat (int): Channel number of intermediate features. Default: 64. |
|
hr_in (bool): Whether the input has high resolution. Default: False. |
|
""" |
|
|
|
def __init__(self, num_in_ch=3, num_feat=64, hr_in=False): |
|
super(PredeblurModule, self).__init__() |
|
self.hr_in = hr_in |
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) |
|
if self.hr_in: |
|
|
|
self.stride_conv_hr1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) |
|
self.stride_conv_hr2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) |
|
|
|
|
|
self.stride_conv_l2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) |
|
self.stride_conv_l3 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) |
|
|
|
self.resblock_l3 = ResidualBlockNoBN(num_feat=num_feat) |
|
self.resblock_l2_1 = ResidualBlockNoBN(num_feat=num_feat) |
|
self.resblock_l2_2 = ResidualBlockNoBN(num_feat=num_feat) |
|
self.resblock_l1 = nn.ModuleList([ResidualBlockNoBN(num_feat=num_feat) for i in range(5)]) |
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) |
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
|
|
def forward(self, x): |
|
feat_l1 = self.lrelu(self.conv_first(x)) |
|
if self.hr_in: |
|
feat_l1 = self.lrelu(self.stride_conv_hr1(feat_l1)) |
|
feat_l1 = self.lrelu(self.stride_conv_hr2(feat_l1)) |
|
|
|
|
|
feat_l2 = self.lrelu(self.stride_conv_l2(feat_l1)) |
|
feat_l3 = self.lrelu(self.stride_conv_l3(feat_l2)) |
|
|
|
feat_l3 = self.upsample(self.resblock_l3(feat_l3)) |
|
feat_l2 = self.resblock_l2_1(feat_l2) + feat_l3 |
|
feat_l2 = self.upsample(self.resblock_l2_2(feat_l2)) |
|
|
|
for i in range(2): |
|
feat_l1 = self.resblock_l1[i](feat_l1) |
|
feat_l1 = feat_l1 + feat_l2 |
|
for i in range(2, 5): |
|
feat_l1 = self.resblock_l1[i](feat_l1) |
|
return feat_l1 |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class EDVR(nn.Module): |
|
"""EDVR network structure for video super-resolution. |
|
|
|
Now only support X4 upsampling factor. |
|
|
|
``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks`` |
|
|
|
Args: |
|
num_in_ch (int): Channel number of input image. Default: 3. |
|
num_out_ch (int): Channel number of output image. Default: 3. |
|
num_feat (int): Channel number of intermediate features. Default: 64. |
|
num_frame (int): Number of input frames. Default: 5. |
|
deformable_groups (int): Deformable groups. Defaults: 8. |
|
num_extract_block (int): Number of blocks for feature extraction. |
|
Default: 5. |
|
num_reconstruct_block (int): Number of blocks for reconstruction. |
|
Default: 10. |
|
center_frame_idx (int): The index of center frame. Frame counting from |
|
0. Default: Middle of input frames. |
|
hr_in (bool): Whether the input has high resolution. Default: False. |
|
with_predeblur (bool): Whether has predeblur module. |
|
Default: False. |
|
with_tsa (bool): Whether has TSA module. Default: True. |
|
""" |
|
|
|
def __init__(self, |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_frame=5, |
|
deformable_groups=8, |
|
num_extract_block=5, |
|
num_reconstruct_block=10, |
|
center_frame_idx=None, |
|
hr_in=False, |
|
with_predeblur=False, |
|
with_tsa=True): |
|
super(EDVR, self).__init__() |
|
if center_frame_idx is None: |
|
self.center_frame_idx = num_frame // 2 |
|
else: |
|
self.center_frame_idx = center_frame_idx |
|
self.hr_in = hr_in |
|
self.with_predeblur = with_predeblur |
|
self.with_tsa = with_tsa |
|
|
|
|
|
if self.with_predeblur: |
|
self.predeblur = PredeblurModule(num_feat=num_feat, hr_in=self.hr_in) |
|
self.conv_1x1 = nn.Conv2d(num_feat, num_feat, 1, 1) |
|
else: |
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) |
|
|
|
|
|
self.feature_extraction = make_layer(ResidualBlockNoBN, num_extract_block, num_feat=num_feat) |
|
self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) |
|
self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) |
|
self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
|
|
|
|
self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=deformable_groups) |
|
if self.with_tsa: |
|
self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_frame, center_frame_idx=self.center_frame_idx) |
|
else: |
|
self.fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1) |
|
|
|
|
|
self.reconstruction = make_layer(ResidualBlockNoBN, num_reconstruct_block, num_feat=num_feat) |
|
|
|
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1) |
|
self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1) |
|
self.pixel_shuffle = nn.PixelShuffle(2) |
|
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1) |
|
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1) |
|
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
|
|
def forward(self, x): |
|
b, t, c, h, w = x.size() |
|
if self.hr_in: |
|
assert h % 16 == 0 and w % 16 == 0, ('The height and width must be multiple of 16.') |
|
else: |
|
assert h % 4 == 0 and w % 4 == 0, ('The height and width must be multiple of 4.') |
|
|
|
x_center = x[:, self.center_frame_idx, :, :, :].contiguous() |
|
|
|
|
|
|
|
if self.with_predeblur: |
|
feat_l1 = self.conv_1x1(self.predeblur(x.view(-1, c, h, w))) |
|
if self.hr_in: |
|
h, w = h // 4, w // 4 |
|
else: |
|
feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w))) |
|
|
|
feat_l1 = self.feature_extraction(feat_l1) |
|
|
|
feat_l2 = self.lrelu(self.conv_l2_1(feat_l1)) |
|
feat_l2 = self.lrelu(self.conv_l2_2(feat_l2)) |
|
|
|
feat_l3 = self.lrelu(self.conv_l3_1(feat_l2)) |
|
feat_l3 = self.lrelu(self.conv_l3_2(feat_l3)) |
|
|
|
feat_l1 = feat_l1.view(b, t, -1, h, w) |
|
feat_l2 = feat_l2.view(b, t, -1, h // 2, w // 2) |
|
feat_l3 = feat_l3.view(b, t, -1, h // 4, w // 4) |
|
|
|
|
|
ref_feat_l = [ |
|
feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(), |
|
feat_l3[:, self.center_frame_idx, :, :, :].clone() |
|
] |
|
aligned_feat = [] |
|
for i in range(t): |
|
nbr_feat_l = [ |
|
feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone() |
|
] |
|
aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l)) |
|
aligned_feat = torch.stack(aligned_feat, dim=1) |
|
|
|
if not self.with_tsa: |
|
aligned_feat = aligned_feat.view(b, -1, h, w) |
|
feat = self.fusion(aligned_feat) |
|
|
|
out = self.reconstruction(feat) |
|
out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) |
|
out = self.lrelu(self.pixel_shuffle(self.upconv2(out))) |
|
out = self.lrelu(self.conv_hr(out)) |
|
out = self.conv_last(out) |
|
if self.hr_in: |
|
base = x_center |
|
else: |
|
base = F.interpolate(x_center, scale_factor=4, mode='bilinear', align_corners=False) |
|
out += base |
|
return out |
|
|