|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
from .arch_util import flow_warp |
|
|
|
|
|
class BasicModule(nn.Module): |
|
"""Basic module of SPyNet. |
|
|
|
Note that unlike the architecture in spynet_arch.py, the basic module |
|
here contains batch normalization. |
|
""" |
|
|
|
def __init__(self): |
|
super(BasicModule, self).__init__() |
|
self.basic_module = nn.Sequential( |
|
nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False), |
|
nn.BatchNorm2d(32), nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3, bias=False), |
|
nn.BatchNorm2d(64), nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False), |
|
nn.BatchNorm2d(32), nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3, bias=False), |
|
nn.BatchNorm2d(16), nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3)) |
|
|
|
def forward(self, tensor_input): |
|
""" |
|
Args: |
|
tensor_input (Tensor): Input tensor with shape (b, 8, h, w). |
|
8 channels contain: |
|
[reference image (3), neighbor image (3), initial flow (2)]. |
|
|
|
Returns: |
|
Tensor: Estimated flow with shape (b, 2, h, w) |
|
""" |
|
return self.basic_module(tensor_input) |
|
|
|
|
|
class SPyNetTOF(nn.Module): |
|
"""SPyNet architecture for TOF. |
|
|
|
Note that this implementation is specifically for TOFlow. Please use :file:`spynet_arch.py` for general use. |
|
They differ in the following aspects: |
|
|
|
1. The basic modules here contain BatchNorm. |
|
2. Normalization and denormalization are not done here, as they are done in TOFlow. |
|
|
|
``Paper: Optical Flow Estimation using a Spatial Pyramid Network`` |
|
|
|
Reference: https://github.com/Coldog2333/pytoflow |
|
|
|
Args: |
|
load_path (str): Path for pretrained SPyNet. Default: None. |
|
""" |
|
|
|
def __init__(self, load_path=None): |
|
super(SPyNetTOF, self).__init__() |
|
|
|
self.basic_module = nn.ModuleList([BasicModule() for _ in range(4)]) |
|
if load_path: |
|
self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params']) |
|
|
|
def forward(self, ref, supp): |
|
""" |
|
Args: |
|
ref (Tensor): Reference image with shape of (b, 3, h, w). |
|
supp: The supporting image to be warped: (b, 3, h, w). |
|
|
|
Returns: |
|
Tensor: Estimated optical flow: (b, 2, h, w). |
|
""" |
|
num_batches, _, h, w = ref.size() |
|
ref = [ref] |
|
supp = [supp] |
|
|
|
|
|
for _ in range(3): |
|
ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False)) |
|
supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False)) |
|
|
|
|
|
flow = ref[0].new_zeros(num_batches, 2, h // 16, w // 16) |
|
for i in range(4): |
|
flow_up = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0 |
|
flow = flow_up + self.basic_module[i]( |
|
torch.cat([ref[i], flow_warp(supp[i], flow_up.permute(0, 2, 3, 1)), flow_up], 1)) |
|
return flow |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class TOFlow(nn.Module): |
|
"""PyTorch implementation of TOFlow. |
|
|
|
In TOFlow, the LR frames are pre-upsampled and have the same size with the GT frames. |
|
|
|
``Paper: Video Enhancement with Task-Oriented Flow`` |
|
|
|
Reference: https://github.com/anchen1011/toflow |
|
|
|
Reference: https://github.com/Coldog2333/pytoflow |
|
|
|
Args: |
|
adapt_official_weights (bool): Whether to adapt the weights translated |
|
from the official implementation. Set to false if you want to |
|
train from scratch. Default: False |
|
""" |
|
|
|
def __init__(self, adapt_official_weights=False): |
|
super(TOFlow, self).__init__() |
|
self.adapt_official_weights = adapt_official_weights |
|
self.ref_idx = 0 if adapt_official_weights else 3 |
|
|
|
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) |
|
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) |
|
|
|
|
|
self.spynet = SPyNetTOF() |
|
|
|
|
|
self.conv_1 = nn.Conv2d(3 * 7, 64, 9, 1, 4) |
|
self.conv_2 = nn.Conv2d(64, 64, 9, 1, 4) |
|
self.conv_3 = nn.Conv2d(64, 64, 1) |
|
self.conv_4 = nn.Conv2d(64, 3, 1) |
|
|
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def normalize(self, img): |
|
return (img - self.mean) / self.std |
|
|
|
def denormalize(self, img): |
|
return img * self.std + self.mean |
|
|
|
def forward(self, lrs): |
|
""" |
|
Args: |
|
lrs: Input lr frames: (b, 7, 3, h, w). |
|
|
|
Returns: |
|
Tensor: SR frame: (b, 3, h, w). |
|
""" |
|
|
|
if self.adapt_official_weights: |
|
lrs = lrs[:, [3, 0, 1, 2, 4, 5, 6], :, :, :] |
|
|
|
num_batches, num_lrs, _, h, w = lrs.size() |
|
|
|
lrs = self.normalize(lrs.view(-1, 3, h, w)) |
|
lrs = lrs.view(num_batches, num_lrs, 3, h, w) |
|
|
|
lr_ref = lrs[:, self.ref_idx, :, :, :] |
|
lr_aligned = [] |
|
for i in range(7): |
|
if i == self.ref_idx: |
|
lr_aligned.append(lr_ref) |
|
else: |
|
lr_supp = lrs[:, i, :, :, :] |
|
flow = self.spynet(lr_ref, lr_supp) |
|
lr_aligned.append(flow_warp(lr_supp, flow.permute(0, 2, 3, 1))) |
|
|
|
|
|
hr = torch.stack(lr_aligned, dim=1) |
|
hr = hr.view(num_batches, -1, h, w) |
|
hr = self.relu(self.conv_1(hr)) |
|
hr = self.relu(self.conv_2(hr)) |
|
hr = self.relu(self.conv_3(hr)) |
|
hr = self.conv_4(hr) + lr_ref |
|
|
|
return self.denormalize(hr) |
|
|