File size: 14,950 Bytes
382d3da d809a40 382d3da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import spaces
import gradio as gr
import json
import torch
import wavio
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from pydub import AudioSegment
from gradio import Markdown
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DiffusionPipeline, AudioPipelineOutput
from transformers import T5EncoderModel, T5Tokenizer, T5TokenizerFast, pipeline
from typing import Union
from diffusers.utils.torch_utils import randn_tensor
from tqdm import tqdm
from langdetect import detect, DetectorFactory
# Ensure consistent results from langdetect
DetectorFactory.seed = 0
class Tango2Pipeline(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: T5EncoderModel,
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
unet: UNet2DConditionModel,
scheduler: DDPMScheduler
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler
)
def _encode_prompt(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def _encode_text_classifier_free(self, prompt, num_samples_per_prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""] * len(prompt)
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
@torch.no_grad()
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
disable_progress=True):
device = self.text_encoder.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(prompt) * num_samples_per_prompt
if classifier_free_guidance:
prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt)
else:
prompt_embeds, boolean_prompt_mask = self._encode_prompt(prompt)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=prompt_embeds,
encoder_attention_mask=boolean_prompt_mask
).sample
# perform guidance
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
return latents
@torch.no_grad()
def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
""" Generate audio for a single prompt string. """
with torch.no_grad():
latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return AudioPipelineOutput(audios=wave)
# Automatic device detection
if torch.cuda.is_available():
device_type = "cuda"
device_selection = "cuda:0"
else:
device_type = "cpu"
device_selection = "cpu"
class Tango:
def __init__(self, name="declare-lab/tango2", device=device_selection):
path = snapshot_download(repo_id=name)
vae_config = json.load(open("{}/vae_config.json".format(path)))
stft_config = json.load(open("{}/stft_config.json".format(path)))
main_config = json.load(open("{}/main_config.json".format(path)))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
self.model = AudioDiffusion(**main_config).to(device)
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device)
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device)
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device)
self.vae.load_state_dict(vae_weights)
self.stft.load_state_dict(stft_weights)
self.model.load_state_dict(main_weights)
print ("Successfully loaded checkpoint from:", name)
self.vae.eval()
self.stft.eval()
self.model.eval()
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler")
def chunks(self, lst, n):
""" Yield successive n-sized chunks from a list. """
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate(self, prompt, steps=200, guidance=8, samples=1, disable_progress=True):
""" Generate audio for a single prompt string. """
with torch.no_grad():
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave[0]
def generate_for_batch(self, prompts, steps=200, guidance=8, samples=1, batch_size=8, disable_progress=True):
""" Generate audio for a list of prompt strings. """
outputs = []
for k in tqdm(range(0, len(prompts), batch_size)):
batch = prompts[k: k+batch_size]
with torch.no_grad():
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
outputs += [item for item in wave]
if samples == 1:
return outputs
else:
return list(self.chunks(outputs, samples))
# Initialize TANGO
tango = Tango(device=device_selection)
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)
pipe = Tango2Pipeline(
vae=tango.vae,
text_encoder=tango.model.text_encoder,
tokenizer=tango.model.tokenizer,
unet=tango.model.unet,
scheduler=tango.scheduler
)
# Initialize Translation Pipeline
translation_pipeline = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
def adjust_audio_length(audio_path, desired_length_sec, output_format):
"""
Adjust the audio to the desired length.
If the audio is shorter, pad with silence.
If longer, trim the audio.
"""
audio = AudioSegment.from_file(audio_path)
desired_length_ms = desired_length_sec * 1000 # Convert to milliseconds
if len(audio) < desired_length_ms:
# Pad with silence
padding = AudioSegment.silent(duration=desired_length_ms - len(audio))
audio += padding
elif len(audio) > desired_length_ms:
# Trim the audio
audio = audio[:desired_length_ms]
# Export the adjusted audio
adjusted_path = f"adjusted.{output_format}"
audio.export(adjusted_path, format=output_format)
return adjusted_path
@spaces.GPU(duration=60)
def gradio_generate(prompt, output_format, steps, guidance, audio_length):
"""
Generate audio based on the prompt, translate if necessary, and adjust its length.
"""
# Detect language
try:
lang = detect(prompt)
except:
lang = "unknown"
# If the prompt is in Korean, translate to English
if lang == "ko":
translated = translation_pipeline(prompt)[0]['translation_text']
print(f"Translated Prompt: {translated}")
prompt_to_use = translated
else:
prompt_to_use = prompt
# Generate audio using the pipeline
output_wave = pipe(prompt_to_use, steps, guidance)
output_wave = output_wave.audios[0]
temp_wav = "temp.wav"
wavio.write(temp_wav, output_wave, rate=16000, sampwidth=2)
# Adjust audio length
adjusted_path = adjust_audio_length(temp_wav, audio_length, output_format)
return adjusted_path
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
output_format = gr.Radio(
label="Output Format",
info="The file you can download",
choices=["mp3", "wav"],
value="wav"
)
audio_length = gr.Slider(
minimum=4,
maximum=10,
step=1,
label="Audio Length (seconds)",
value=6,
interactive=True
)
output_audio = gr.Audio(label="Generated Audio", type="filepath")
denoising_steps = gr.Slider(
minimum=100,
maximum=200,
step=1,
label="Steps",
value=200, # Changed from 100 to 200
interactive=True
)
guidance_scale = gr.Slider(
minimum=1,
maximum=10,
step=0.1,
label="Guidance Scale",
value=8, # Changed from 3 to 8
interactive=True
)
# Gradio interface
gr_interface = gr.Interface(
theme="Nymbo/Nymbo_Theme",
fn=gradio_generate,
inputs=[input_text, output_format, denoising_steps, guidance_scale, audio_length],
outputs=[output_audio],
title="Tango2: Text to SoundFX",
allow_flagging=False,
examples=[
["์กฐ์ฉํ ๋ง์๋ฆฌ ํ ๋นํ๊ธฐ๊ฐ ๋ฉ์ด์ง๋ ์๋ฆฌ"],
["์ฌ๋๋ค์ด ํํธํ๊ณ ๋ฐ์์น๋ ์๋ฆฌ"],
["๊ฐํ ๋ฐ๋ ์๋ฆฌ์ ๋น์๋ฆฌ"],
["Quiet speech and then and airplane flying away"],
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"],
["Ducks quack and water splashes with some animal screeching in the background"],
["Describe the sound of the ocean"],
["A woman and a baby are having a conversation"],
["A man speaks followed by a popping noise and laughter"],
["A cup is filled from a faucet"],
["An audience cheering and clapping"],
["Rolling thunder with lightning strikes"],
["A dog barking and a cat mewing and a racing car passes by"],
["Gentle water stream, birds chirping and sudden gun shot"],
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."],
["A dog barking"],
["A cat meowing"],
["Wooden table tapping sound while water pouring"],
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"],
["two gunshots followed by birds flying away while chirping"],
["Whistling with birds chirping"],
["A person snoring"],
["Motor vehicles are driving with loud engines and a person whistles"],
["People cheering in a stadium while thunder and lightning strikes"],
["A helicopter is in flight"],
["A dog barking and a man talking and a racing car passes by"],
],
cache_examples="lazy", # Turn on to cache.
)
# Launch Gradio app
gr_interface.queue(10).launch()
|