|
import spaces |
|
import gradio as gr |
|
import json |
|
import torch |
|
import wavio |
|
from tqdm import tqdm |
|
from huggingface_hub import snapshot_download |
|
from models import AudioDiffusion, DDPMScheduler |
|
from audioldm.audio.stft import TacotronSTFT |
|
from audioldm.variational_autoencoder import AutoencoderKL |
|
from pydub import AudioSegment |
|
from gradio import Markdown |
|
|
|
from diffusers.models.unet_2d_condition import UNet2DConditionModel |
|
from diffusers import DiffusionPipeline, AudioPipelineOutput |
|
from transformers import T5EncoderModel, T5Tokenizer, T5TokenizerFast, pipeline |
|
from typing import Union |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from tqdm import tqdm |
|
from langdetect import detect, DetectorFactory |
|
|
|
|
|
DetectorFactory.seed = 0 |
|
|
|
class Tango2Pipeline(DiffusionPipeline): |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: T5EncoderModel, |
|
tokenizer: Union[T5Tokenizer, T5TokenizerFast], |
|
unet: UNet2DConditionModel, |
|
scheduler: DDPMScheduler |
|
): |
|
super().__init__() |
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler |
|
) |
|
|
|
def _encode_prompt(self, prompt): |
|
device = self.text_encoder.device |
|
|
|
batch = self.tokenizer( |
|
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" |
|
) |
|
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) |
|
|
|
encoder_hidden_states = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
|
|
boolean_encoder_mask = (attention_mask == 1).to(device) |
|
|
|
return encoder_hidden_states, boolean_encoder_mask |
|
|
|
def _encode_text_classifier_free(self, prompt, num_samples_per_prompt): |
|
device = self.text_encoder.device |
|
batch = self.tokenizer( |
|
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" |
|
) |
|
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
prompt_embeds = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
uncond_tokens = [""] * len(prompt) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_batch = self.tokenizer( |
|
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", |
|
) |
|
uncond_input_ids = uncond_batch.input_ids.to(device) |
|
uncond_attention_mask = uncond_batch.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
negative_prompt_embeds = self.text_encoder( |
|
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask |
|
)[0] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) |
|
boolean_prompt_mask = (prompt_mask == 1).to(device) |
|
|
|
return prompt_embeds, boolean_prompt_mask |
|
|
|
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): |
|
shape = (batch_size, num_channels_latents, 256, 16) |
|
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) |
|
|
|
latents = latents * inference_scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, |
|
disable_progress=True): |
|
device = self.text_encoder.device |
|
classifier_free_guidance = guidance_scale > 1.0 |
|
batch_size = len(prompt) * num_samples_per_prompt |
|
|
|
if classifier_free_guidance: |
|
prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt) |
|
else: |
|
prompt_embeds, boolean_prompt_mask = self._encode_prompt(prompt) |
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
inference_scheduler.set_timesteps(num_steps, device=device) |
|
timesteps = inference_scheduler.timesteps |
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) |
|
|
|
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order |
|
progress_bar = tqdm(range(num_steps), disable=disable_progress) |
|
|
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents |
|
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=prompt_embeds, |
|
encoder_attention_mask=boolean_prompt_mask |
|
).sample |
|
|
|
|
|
if classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): |
|
progress_bar.update(1) |
|
|
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): |
|
""" Generate audio for a single prompt string. """ |
|
with torch.no_grad(): |
|
latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
|
|
return AudioPipelineOutput(audios=wave) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device_type = "cuda" |
|
device_selection = "cuda:0" |
|
else: |
|
device_type = "cpu" |
|
device_selection = "cpu" |
|
|
|
class Tango: |
|
def __init__(self, name="declare-lab/tango2", device=device_selection): |
|
|
|
path = snapshot_download(repo_id=name) |
|
|
|
vae_config = json.load(open("{}/vae_config.json".format(path))) |
|
stft_config = json.load(open("{}/stft_config.json".format(path))) |
|
main_config = json.load(open("{}/main_config.json".format(path))) |
|
|
|
self.vae = AutoencoderKL(**vae_config).to(device) |
|
self.stft = TacotronSTFT(**stft_config).to(device) |
|
self.model = AudioDiffusion(**main_config).to(device) |
|
|
|
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) |
|
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) |
|
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) |
|
|
|
self.vae.load_state_dict(vae_weights) |
|
self.stft.load_state_dict(stft_weights) |
|
self.model.load_state_dict(main_weights) |
|
|
|
print ("Successfully loaded checkpoint from:", name) |
|
|
|
self.vae.eval() |
|
self.stft.eval() |
|
self.model.eval() |
|
|
|
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") |
|
|
|
def chunks(self, lst, n): |
|
""" Yield successive n-sized chunks from a list. """ |
|
for i in range(0, len(lst), n): |
|
yield lst[i:i + n] |
|
|
|
def generate(self, prompt, steps=200, guidance=8, samples=1, disable_progress=True): |
|
""" Generate audio for a single prompt string. """ |
|
with torch.no_grad(): |
|
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
return wave[0] |
|
|
|
def generate_for_batch(self, prompts, steps=200, guidance=8, samples=1, batch_size=8, disable_progress=True): |
|
""" Generate audio for a list of prompt strings. """ |
|
outputs = [] |
|
for k in tqdm(range(0, len(prompts), batch_size)): |
|
batch = prompts[k: k+batch_size] |
|
with torch.no_grad(): |
|
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
outputs += [item for item in wave] |
|
if samples == 1: |
|
return outputs |
|
else: |
|
return list(self.chunks(outputs, samples)) |
|
|
|
|
|
tango = Tango(device=device_selection) |
|
tango.vae.to(device_type) |
|
tango.stft.to(device_type) |
|
tango.model.to(device_type) |
|
|
|
pipe = Tango2Pipeline( |
|
vae=tango.vae, |
|
text_encoder=tango.model.text_encoder, |
|
tokenizer=tango.model.tokenizer, |
|
unet=tango.model.unet, |
|
scheduler=tango.scheduler |
|
) |
|
|
|
|
|
translation_pipeline = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") |
|
|
|
def adjust_audio_length(audio_path, desired_length_sec, output_format): |
|
""" |
|
Adjust the audio to the desired length. |
|
If the audio is shorter, pad with silence. |
|
If longer, trim the audio. |
|
""" |
|
audio = AudioSegment.from_file(audio_path) |
|
desired_length_ms = desired_length_sec * 1000 |
|
|
|
if len(audio) < desired_length_ms: |
|
|
|
padding = AudioSegment.silent(duration=desired_length_ms - len(audio)) |
|
audio += padding |
|
elif len(audio) > desired_length_ms: |
|
|
|
audio = audio[:desired_length_ms] |
|
|
|
|
|
adjusted_path = f"adjusted.{output_format}" |
|
audio.export(adjusted_path, format=output_format) |
|
return adjusted_path |
|
|
|
@spaces.GPU(duration=60) |
|
def gradio_generate(prompt, output_format, steps, guidance, audio_length): |
|
""" |
|
Generate audio based on the prompt, translate if necessary, and adjust its length. |
|
""" |
|
|
|
try: |
|
lang = detect(prompt) |
|
except: |
|
lang = "unknown" |
|
|
|
|
|
if lang == "ko": |
|
translated = translation_pipeline(prompt)[0]['translation_text'] |
|
print(f"Translated Prompt: {translated}") |
|
prompt_to_use = translated |
|
else: |
|
prompt_to_use = prompt |
|
|
|
|
|
output_wave = pipe(prompt_to_use, steps, guidance) |
|
output_wave = output_wave.audios[0] |
|
temp_wav = "temp.wav" |
|
wavio.write(temp_wav, output_wave, rate=16000, sampwidth=2) |
|
|
|
|
|
adjusted_path = adjust_audio_length(temp_wav, audio_length, output_format) |
|
|
|
return adjusted_path |
|
|
|
|
|
input_text = gr.Textbox(lines=2, label="Prompt") |
|
output_format = gr.Radio( |
|
label="Output Format", |
|
info="The file you can download", |
|
choices=["mp3", "wav"], |
|
value="wav" |
|
) |
|
audio_length = gr.Slider( |
|
minimum=4, |
|
maximum=10, |
|
step=1, |
|
label="Audio Length (seconds)", |
|
value=6, |
|
interactive=True |
|
) |
|
output_audio = gr.Audio(label="Generated Audio", type="filepath") |
|
denoising_steps = gr.Slider( |
|
minimum=100, |
|
maximum=200, |
|
step=1, |
|
label="Steps", |
|
value=200, |
|
interactive=True |
|
) |
|
guidance_scale = gr.Slider( |
|
minimum=1, |
|
maximum=10, |
|
step=0.1, |
|
label="Guidance Scale", |
|
value=8, |
|
interactive=True |
|
) |
|
|
|
|
|
gr_interface = gr.Interface( |
|
theme="Nymbo/Nymbo_Theme", |
|
fn=gradio_generate, |
|
inputs=[input_text, output_format, denoising_steps, guidance_scale, audio_length], |
|
outputs=[output_audio], |
|
title="Tango2: Text to SoundFX", |
|
allow_flagging=False, |
|
examples=[ |
|
["μ‘°μ©ν λ§μ리 ν λΉνκΈ°κ° λ©μ΄μ§λ μ리"], |
|
["μ¬λλ€μ΄ ννΈνκ³ λ°μμΉλ μ리"], |
|
["κ°ν λ°λ μ리μ λΉμ리"], |
|
["Quiet speech and then and airplane flying away"], |
|
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"], |
|
["Ducks quack and water splashes with some animal screeching in the background"], |
|
["Describe the sound of the ocean"], |
|
["A woman and a baby are having a conversation"], |
|
["A man speaks followed by a popping noise and laughter"], |
|
["A cup is filled from a faucet"], |
|
["An audience cheering and clapping"], |
|
["Rolling thunder with lightning strikes"], |
|
["A dog barking and a cat mewing and a racing car passes by"], |
|
["Gentle water stream, birds chirping and sudden gun shot"], |
|
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."], |
|
["A dog barking"], |
|
["A cat meowing"], |
|
["Wooden table tapping sound while water pouring"], |
|
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"], |
|
["two gunshots followed by birds flying away while chirping"], |
|
["Whistling with birds chirping"], |
|
["A person snoring"], |
|
["Motor vehicles are driving with loud engines and a person whistles"], |
|
["People cheering in a stadium while thunder and lightning strikes"], |
|
["A helicopter is in flight"], |
|
["A dog barking and a man talking and a racing car passes by"], |
|
|
|
], |
|
cache_examples="lazy", |
|
) |
|
|
|
|
|
gr_interface.queue(10).launch() |
|
|