tango2 / tools /torch_tools.py
hungchiayu1
initial commit
ffead1e
import torch
import torchaudio
import random
import itertools
import numpy as np
from tools.mix import mix
def normalize_wav(waveform):
waveform = waveform - torch.mean(waveform)
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
return waveform * 0.5
def pad_wav(waveform, segment_length):
waveform_length = len(waveform)
if segment_length is None or waveform_length == segment_length:
return waveform
elif waveform_length > segment_length:
return waveform[:segment_length]
else:
pad_wav = torch.zeros(segment_length - waveform_length).to(waveform.device)
waveform = torch.cat([waveform, pad_wav])
return waveform
def _pad_spec(fbank, target_length=1024):
batch, n_frames, channels = fbank.shape
p = target_length - n_frames
if p > 0:
pad = torch.zeros(batch, p, channels).to(fbank.device)
fbank = torch.cat([fbank, pad], 1)
elif p < 0:
fbank = fbank[:, :target_length, :]
if channels % 2 != 0:
fbank = fbank[:, :, :-1]
return fbank
def read_wav_file(filename, segment_length):
waveform, sr = torchaudio.load(filename) # Faster!!!
try:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)[0]
except:
print ("0 length wav encountered. Setting to random:", filename)
waveform = torch.rand(160000)
try:
waveform = normalize_wav(waveform)
except:
print ("Exception normalizing:", filename)
waveform = torch.ones(160000)
waveform = pad_wav(waveform, segment_length).unsqueeze(0)
waveform = waveform / torch.max(torch.abs(waveform))
waveform = 0.5 * waveform
return waveform
def get_mel_from_wav(audio, _stft):
audio = torch.nan_to_num(torch.clip(audio, -1, 1))
audio = torch.autograd.Variable(audio, requires_grad=False)
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
return melspec, log_magnitudes_stft, energy
def wav_to_fbank(paths, target_length=1024, fn_STFT=None):
assert fn_STFT is not None
waveform = torch.cat([read_wav_file(path, target_length * 160) for path in paths], 0) # hop size is 160
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = fbank.transpose(1, 2)
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
return fbank, log_magnitudes_stft, waveform
def uncapitalize(s):
if s:
return s[:1].lower() + s[1:]
else:
return ""
def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=1024):
sound1 = read_wav_file(path1, target_length * 160)[0].numpy()
sound2 = read_wav_file(path2, target_length * 160)[0].numpy()
mixed_sound = mix(sound1, sound2, 0.5, 16000).reshape(1, -1)
mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2))
return mixed_sound, mixed_caption
def augment(paths, texts, num_items=4, target_length=1024):
mixed_sounds, mixed_captions = [], []
combinations = list(itertools.combinations(list(range(len(texts))), 2))
random.shuffle(combinations)
if len(combinations) < num_items:
selected_combinations = combinations
else:
selected_combinations = combinations[:num_items]
for (i, j) in selected_combinations:
new_sound, new_caption = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length)
mixed_sounds.append(new_sound)
mixed_captions.append(new_caption)
waveform = torch.tensor(np.concatenate(mixed_sounds, 0))
waveform = waveform / torch.max(torch.abs(waveform))
waveform = 0.5 * waveform
return waveform, mixed_captions
def augment_wav_to_fbank(paths, texts, num_items=4, target_length=1024, fn_STFT=None):
assert fn_STFT is not None
waveform, captions = augment(paths, texts)
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = fbank.transpose(1, 2)
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
return fbank, log_magnitudes_stft, waveform, captions