File size: 18,775 Bytes
2673dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
from pathlib import Path
from types import SimpleNamespace
import warnings
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from typing import Optional, List, Callable

try:
    from flash_attn.modules.mha import FlashCrossAttention
except ModuleNotFoundError:
    FlashCrossAttention = None

if FlashCrossAttention or hasattr(F, 'scaled_dot_product_attention'):
    FLASH_AVAILABLE = True
else:
    FLASH_AVAILABLE = False

torch.backends.cudnn.deterministic = True


@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def normalize_keypoints(
        kpts: torch.Tensor,
        size: torch.Tensor) -> torch.Tensor:
    if isinstance(size, torch.Size):
        size = torch.tensor(size)[None]
    shift = size.float().to(kpts) / 2
    scale = size.max(1).values.float().to(kpts) / 2
    kpts = (kpts - shift[:, None]) / scale[:, None, None]
    return kpts


def rotate_half(x: torch.Tensor) -> torch.Tensor:
    x = x.unflatten(-1, (-1, 2))
    x1, x2 = x.unbind(dim=-1)
    return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2)


def apply_cached_rotary_emb(
        freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
    return (t * freqs[0]) + (rotate_half(t) * freqs[1])


class LearnableFourierPositionalEncoding(nn.Module):
    def __init__(self, M: int, dim: int, F_dim: int = None,
                 gamma: float = 1.0) -> None:
        super().__init__()
        F_dim = F_dim if F_dim is not None else dim
        self.gamma = gamma
        self.Wr = nn.Linear(M, F_dim // 2, bias=False)
        nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma ** -2)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ encode position vector """
        projected = self.Wr(x)
        cosines, sines = torch.cos(projected), torch.sin(projected)
        emb = torch.stack([cosines, sines], 0).unsqueeze(-3)
        return emb.repeat_interleave(2, dim=-1)


class TokenConfidence(nn.Module):
    def __init__(self, dim: int) -> None:
        super().__init__()
        self.token = nn.Sequential(
            nn.Linear(dim, 1),
            nn.Sigmoid()
        )

    def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
        """ get confidence tokens """
        return (
            self.token(desc0.detach().float()).squeeze(-1),
            self.token(desc1.detach().float()).squeeze(-1))


class Attention(nn.Module):
    def __init__(self, allow_flash: bool) -> None:
        super().__init__()
        if allow_flash and not FLASH_AVAILABLE:
            warnings.warn(
                'FlashAttention is not available. For optimal speed, '
                'consider installing torch >= 2.0 or flash-attn.',
                stacklevel=2,
            )
        self.enable_flash = allow_flash and FLASH_AVAILABLE
        if allow_flash and FlashCrossAttention:
            self.flash_ = FlashCrossAttention()

    def forward(self, q, k, v) -> torch.Tensor:
        if self.enable_flash and q.device.type == 'cuda':
            if FlashCrossAttention:
                q, k, v = [x.transpose(-2, -3) for x in [q, k, v]]
                m = self.flash_(q.half(), torch.stack([k, v], 2).half())
                return m.transpose(-2, -3).to(q.dtype)
            else:  # use torch 2.0 scaled_dot_product_attention with flash
                args = [x.half().contiguous() for x in [q, k, v]]
                with torch.backends.cuda.sdp_kernel(enable_flash=True):
                    return F.scaled_dot_product_attention(*args).to(q.dtype)
        elif hasattr(F, 'scaled_dot_product_attention'):
            args = [x.contiguous() for x in [q, k, v]]
            return F.scaled_dot_product_attention(*args).to(q.dtype)
        else:
            s = q.shape[-1] ** -0.5
            attn = F.softmax(torch.einsum('...id,...jd->...ij', q, k) * s, -1)
            return torch.einsum('...ij,...jd->...id', attn, v)


class Transformer(nn.Module):
    def __init__(self, embed_dim: int, num_heads: int,
                 flash: bool = False, bias: bool = True) -> None:
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        assert self.embed_dim % num_heads == 0
        self.head_dim = self.embed_dim // num_heads
        self.Wqkv = nn.Linear(embed_dim, 3*embed_dim, bias=bias)
        self.inner_attn = Attention(flash)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.ffn = nn.Sequential(
            nn.Linear(2*embed_dim, 2*embed_dim),
            nn.LayerNorm(2*embed_dim, elementwise_affine=True),
            nn.GELU(),
            nn.Linear(2*embed_dim, embed_dim)
        )

    def _forward(self, x: torch.Tensor,
                 encoding: Optional[torch.Tensor] = None):
        qkv = self.Wqkv(x)
        qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2)
        q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2]
        if encoding is not None:
            q = apply_cached_rotary_emb(encoding, q)
            k = apply_cached_rotary_emb(encoding, k)
        context = self.inner_attn(q, k, v)
        message = self.out_proj(
            context.transpose(1, 2).flatten(start_dim=-2))
        return x + self.ffn(torch.cat([x, message], -1))

    def forward(self, x0, x1, encoding0=None, encoding1=None):
        return self._forward(x0, encoding0), self._forward(x1, encoding1)


class CrossTransformer(nn.Module):
    def __init__(self, embed_dim: int, num_heads: int,
                 flash: bool = False, bias: bool = True) -> None:
        super().__init__()
        self.heads = num_heads
        dim_head = embed_dim // num_heads
        self.scale = dim_head ** -0.5
        inner_dim = dim_head * num_heads
        self.to_qk = nn.Linear(embed_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(embed_dim, inner_dim, bias=bias)
        self.to_out = nn.Linear(inner_dim, embed_dim, bias=bias)
        self.ffn = nn.Sequential(
            nn.Linear(2*embed_dim, 2*embed_dim),
            nn.LayerNorm(2*embed_dim, elementwise_affine=True),
            nn.GELU(),
            nn.Linear(2*embed_dim, embed_dim)
        )

        if flash and FLASH_AVAILABLE:
            self.flash = Attention(True)
        else:
            self.flash = None

    def map_(self, func: Callable, x0: torch.Tensor, x1: torch.Tensor):
        return func(x0), func(x1)

    def forward(self, x0: torch.Tensor, x1: torch.Tensor) -> List[torch.Tensor]:
        qk0, qk1 = self.map_(self.to_qk, x0, x1)
        v0, v1 = self.map_(self.to_v, x0, x1)
        qk0, qk1, v0, v1 = map(
            lambda t: t.unflatten(-1, (self.heads, -1)).transpose(1, 2),
            (qk0, qk1, v0, v1))
        if self.flash is not None:
            m0 = self.flash(qk0, qk1, v1)
            m1 = self.flash(qk1, qk0, v0)
        else:
            qk0, qk1 = qk0 * self.scale**0.5, qk1 * self.scale**0.5
            sim = torch.einsum('b h i d, b h j d -> b h i j', qk0, qk1)
            attn01 = F.softmax(sim, dim=-1)
            attn10 = F.softmax(sim.transpose(-2, -1).contiguous(), dim=-1)
            m0 = torch.einsum('bhij, bhjd -> bhid', attn01, v1)
            m1 = torch.einsum('bhji, bhjd -> bhid', attn10.transpose(-2, -1), v0)
        m0, m1 = self.map_(lambda t: t.transpose(1, 2).flatten(start_dim=-2),
                           m0, m1)
        m0, m1 = self.map_(self.to_out, m0, m1)
        x0 = x0 + self.ffn(torch.cat([x0, m0], -1))
        x1 = x1 + self.ffn(torch.cat([x1, m1], -1))
        return x0, x1


def sigmoid_log_double_softmax(
        sim: torch.Tensor, z0: torch.Tensor, z1: torch.Tensor) -> torch.Tensor:
    """ create the log assignment matrix from logits and similarity"""
    b, m, n = sim.shape
    certainties = F.logsigmoid(z0) + F.logsigmoid(z1).transpose(1, 2)
    scores0 = F.log_softmax(sim, 2)
    scores1 = F.log_softmax(
        sim.transpose(-1, -2).contiguous(), 2).transpose(-1, -2)
    scores = sim.new_full((b, m+1, n+1), 0)
    scores[:, :m, :n] = (scores0 + scores1 + certainties)
    scores[:, :-1, -1] = F.logsigmoid(-z0.squeeze(-1))
    scores[:, -1, :-1] = F.logsigmoid(-z1.squeeze(-1))
    return scores


class MatchAssignment(nn.Module):
    def __init__(self, dim: int) -> None:
        super().__init__()
        self.dim = dim
        self.matchability = nn.Linear(dim, 1, bias=True)
        self.final_proj = nn.Linear(dim, dim, bias=True)

    def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
        """ build assignment matrix from descriptors """
        mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
        _, _, d = mdesc0.shape
        mdesc0, mdesc1 = mdesc0 / d**.25, mdesc1 / d**.25
        sim = torch.einsum('bmd,bnd->bmn', mdesc0, mdesc1)
        z0 = self.matchability(desc0)
        z1 = self.matchability(desc1)
        scores = sigmoid_log_double_softmax(sim, z0, z1)
        return scores, sim

    def scores(self, desc0: torch.Tensor, desc1: torch.Tensor):
        m0 = torch.sigmoid(self.matchability(desc0)).squeeze(-1)
        m1 = torch.sigmoid(self.matchability(desc1)).squeeze(-1)
        return m0, m1


def filter_matches(scores: torch.Tensor, th: float):
    """ obtain matches from a log assignment matrix [Bx M+1 x N+1]"""
    max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
    m0, m1 = max0.indices, max1.indices
    mutual0 = torch.arange(m0.shape[1]).to(m0)[None] == m1.gather(1, m0)
    mutual1 = torch.arange(m1.shape[1]).to(m1)[None] == m0.gather(1, m1)
    max0_exp = max0.values.exp()
    zero = max0_exp.new_tensor(0)
    mscores0 = torch.where(mutual0, max0_exp, zero)
    mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero)
    if th is not None:
        valid0 = mutual0 & (mscores0 > th)
    else:
        valid0 = mutual0
    valid1 = mutual1 & valid0.gather(1, m1)
    m0 = torch.where(valid0, m0, m0.new_tensor(-1))
    m1 = torch.where(valid1, m1, m1.new_tensor(-1))
    return m0, m1, mscores0, mscores1


class LightGlue(nn.Module):
    default_conf = {
        'name': 'lightglue',  # just for interfacing
        'input_dim': 256,  # input descriptor dimension (autoselected from weights)
        'descriptor_dim': 256,
        'n_layers': 9,
        'num_heads': 4,
        'flash': True,  # enable FlashAttention if available.
        'mp': False,  # enable mixed precision
        'depth_confidence': 0.95,  # early stopping, disable with -1
        'width_confidence': 0.99,  # point pruning, disable with -1
        'filter_threshold': 0.1,  # match threshold
        'weights': None,
    }

    required_data_keys = [
        'image0', 'image1']

    version = "v0.1_arxiv"
    url = "https://github.com/cvg/LightGlue/releases/download/{}/{}_lightglue.pth"

    features = {
        'superpoint': ('superpoint_lightglue', 256),
        'disk': ('disk_lightglue', 128)
    }

    def __init__(self, features='superpoint', **conf) -> None:
        super().__init__()
        self.conf = {**self.default_conf, **conf}
        if features is not None:
            assert (features in list(self.features.keys()))
            self.conf['weights'], self.conf['input_dim'] = \
                self.features[features]
        self.conf = conf = SimpleNamespace(**self.conf)

        if conf.input_dim != conf.descriptor_dim:
            self.input_proj = nn.Linear(
                conf.input_dim, conf.descriptor_dim, bias=True)
        else:
            self.input_proj = nn.Identity()

        head_dim = conf.descriptor_dim // conf.num_heads
        self.posenc = LearnableFourierPositionalEncoding(2, head_dim, head_dim)

        h, n, d = conf.num_heads, conf.n_layers, conf.descriptor_dim
        self.self_attn = nn.ModuleList(
            [Transformer(d, h, conf.flash) for _ in range(n)])
        self.cross_attn = nn.ModuleList(
            [CrossTransformer(d, h, conf.flash) for _ in range(n)])
        self.log_assignment = nn.ModuleList(
            [MatchAssignment(d) for _ in range(n)])
        self.token_confidence = nn.ModuleList([
            TokenConfidence(d) for _ in range(n-1)])

        if features is not None:
            fname = f'{conf.weights}_{self.version}.pth'.replace('.', '-')
            state_dict = torch.hub.load_state_dict_from_url(
                self.url.format(self.version, features), file_name=fname)
            self.load_state_dict(state_dict, strict=False)
        elif conf.weights is not None:
            path = Path(__file__).parent
            path = path / 'weights/{}.pth'.format(self.conf.weights)
            state_dict = torch.load(str(path), map_location='cpu')
            self.load_state_dict(state_dict, strict=False)

        print('Loaded LightGlue model')

    def forward(self, data: dict) -> dict:
        """
        Match keypoints and descriptors between two images

        Input (dict):
            image0: dict
                keypoints: [B x M x 2]
                descriptors: [B x M x D]
                image: [B x C x H x W] or image_size: [B x 2]
            image1: dict
                keypoints: [B x N x 2]
                descriptors: [B x N x D]
                image: [B x C x H x W] or image_size: [B x 2]
        Output (dict):
            log_assignment: [B x M+1 x N+1]
            matches0: [B x M]
            matching_scores0: [B x M]
            matches1: [B x N]
            matching_scores1: [B x N]
            matches: List[[Si x 2]], scores: List[[Si]]
        """
        with torch.autocast(enabled=self.conf.mp, device_type='cuda'):
            return self._forward(data)

    def _forward(self, data: dict) -> dict:
        for key in self.required_data_keys:
            assert key in data, f'Missing key {key} in data'
        data0, data1 = data['image0'], data['image1']
        kpts0_, kpts1_ = data0['keypoints'], data1['keypoints']
        b, m, _ = kpts0_.shape
        b, n, _ = kpts1_.shape
        size0, size1 = data0.get('image_size'), data1.get('image_size')
        size0 = size0 if size0 is not None else data0['image'].shape[-2:][::-1]
        size1 = size1 if size1 is not None else data1['image'].shape[-2:][::-1]
        kpts0 = normalize_keypoints(kpts0_, size=size0)
        kpts1 = normalize_keypoints(kpts1_, size=size1)

        assert torch.all(kpts0 >= -1) and torch.all(kpts0 <= 1)
        assert torch.all(kpts1 >= -1) and torch.all(kpts1 <= 1)

        desc0 = data0['descriptors'].detach()
        desc1 = data1['descriptors'].detach()

        assert desc0.shape[-1] == self.conf.input_dim
        assert desc1.shape[-1] == self.conf.input_dim

        if torch.is_autocast_enabled():
            desc0 = desc0.half()
            desc1 = desc1.half()

        desc0 = self.input_proj(desc0)
        desc1 = self.input_proj(desc1)

        # cache positional embeddings
        encoding0 = self.posenc(kpts0)
        encoding1 = self.posenc(kpts1)

        # GNN + final_proj + assignment
        ind0 = torch.arange(0, m).to(device=kpts0.device)[None]
        ind1 = torch.arange(0, n).to(device=kpts0.device)[None]
        prune0 = torch.ones_like(ind0)  # store layer where pruning is detected
        prune1 = torch.ones_like(ind1)
        dec, wic = self.conf.depth_confidence, self.conf.width_confidence
        token0, token1 = None, None
        for i in range(self.conf.n_layers):
            # self+cross attention
            desc0, desc1 = self.self_attn[i](
                desc0, desc1, encoding0, encoding1)
            desc0, desc1 = self.cross_attn[i](desc0, desc1)
            if i == self.conf.n_layers - 1:
                continue  # no early stopping or adaptive width at last layer
            if dec > 0:  # early stopping
                token0, token1 = self.token_confidence[i](desc0, desc1)
                if self.stop(token0, token1, self.conf_th(i), dec, m+n):
                    break
            if wic > 0:  # point pruning
                match0, match1 = self.log_assignment[i].scores(desc0, desc1)
                mask0 = self.get_mask(token0, match0, self.conf_th(i), 1-wic)
                mask1 = self.get_mask(token1, match1, self.conf_th(i), 1-wic)
                ind0, ind1 = ind0[mask0][None], ind1[mask1][None]
                desc0, desc1 = desc0[mask0][None], desc1[mask1][None]
                if desc0.shape[-2] == 0 or desc1.shape[-2] == 0:
                    break
                encoding0 = encoding0[:, :, mask0][:, None]
                encoding1 = encoding1[:, :, mask1][:, None]
            prune0[:, ind0] += 1
            prune1[:, ind1] += 1

        if wic > 0:  # scatter with indices after pruning
            scores_, _ = self.log_assignment[i](desc0, desc1)
            dt, dev = scores_.dtype, scores_.device
            scores = torch.zeros(b, m+1, n+1, dtype=dt, device=dev)
            scores[:, :-1, :-1] = -torch.inf
            scores[:, ind0[0], -1] = scores_[:, :-1, -1]
            scores[:, -1, ind1[0]] = scores_[:, -1, :-1]
            x, y = torch.meshgrid(ind0[0], ind1[0], indexing='ij')
            scores[:, x, y] = scores_[:, :-1, :-1]
        else:
            scores, _ = self.log_assignment[i](desc0, desc1)

        m0, m1, mscores0, mscores1 = filter_matches(
            scores, self.conf.filter_threshold)

        matches, mscores = [], []
        for k in range(b):
            valid = m0[k] > -1
            matches.append(torch.stack([torch.where(valid)[0], m0[k][valid]], -1))
            mscores.append(mscores0[k][valid])

        return {
            'log_assignment': scores,
            'matches0': m0,
            'matches1': m1,
            'matching_scores0': mscores0,
            'matching_scores1': mscores1,
            'stop': i+1,
            'prune0': prune0,
            'prune1': prune1,
            'matches': matches,
            'scores': mscores,
        }

    def conf_th(self, i: int) -> float:
        """ scaled confidence threshold """
        return np.clip(
            0.8 + 0.1 * np.exp(-4.0 * i / self.conf.n_layers), 0, 1)

    def get_mask(self, confidence: torch.Tensor, match: torch.Tensor,
                 conf_th: float, match_th: float) -> torch.Tensor:
        """ mask points which should be removed """
        if conf_th and confidence is not None:
            mask = torch.where(confidence > conf_th, match,
                               match.new_tensor(1.0)) > match_th
        else:
            mask = match > match_th
        return mask

    def stop(self, token0: torch.Tensor, token1: torch.Tensor,
             conf_th: float, inl_th: float, seql: int) -> torch.Tensor:
        """ evaluate stopping condition"""
        tokens = torch.cat([token0, token1], -1)
        if conf_th:
            pos = 1.0 - (tokens < conf_th).float().sum() / seql
            return pos > inl_th
        else:
            return tokens.mean() > inl_th