File size: 4,995 Bytes
404d2af
 
 
 
 
 
 
8b973ee
 
 
 
 
 
404d2af
 
 
 
 
8b973ee
 
 
 
 
 
 
 
 
 
404d2af
 
8b973ee
 
 
 
404d2af
 
 
 
 
 
8b973ee
 
404d2af
8b973ee
 
 
 
404d2af
 
8b973ee
404d2af
8b973ee
 
 
 
404d2af
8b973ee
 
 
 
 
404d2af
 
8b973ee
 
 
 
 
 
404d2af
8b973ee
 
 
 
 
 
 
 
404d2af
8b973ee
 
 
404d2af
 
 
 
 
8b973ee
404d2af
8b973ee
 
404d2af
8b973ee
404d2af
 
 
8b973ee
404d2af
 
8b973ee
 
 
404d2af
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
8b973ee
404d2af
8b973ee
404d2af
 
 
8b973ee
 
 
 
 
 
404d2af
 
 
 
 
 
8b973ee
 
 
404d2af
8b973ee
404d2af
 
8b973ee
 
 
 
 
 
 
 
 
404d2af
 
8b973ee
 
 
404d2af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from pathlib import Path
import argparse
import cv2
import matplotlib.cm as cm
import torch
import numpy as np
from utils.nnmatching import NNMatching
from utils.misc import (
    AverageTimer,
    VideoStreamer,
    make_matching_plot_fast,
    frame2tensor,
)

torch.set_grad_enabled(False)


def compute_essential(matched_kp1, matched_kp2, K):
    pts1 = cv2.undistortPoints(
        matched_kp1,
        cameraMatrix=K,
        distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
    )
    pts2 = cv2.undistortPoints(
        matched_kp2,
        cameraMatrix=K,
        distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
    )
    K_1 = np.eye(3)
    # Estimate the homography between the matches using RANSAC
    ransac_model, ransac_inliers = cv2.findEssentialMat(
        pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000
    )
    if ransac_inliers is None or ransac_model.shape != (3, 3):
        ransac_inliers = np.array([])
        ransac_model = None
    return ransac_model, ransac_inliers, pts1, pts2


sizer = (960, 640)
focallength_x = 4.504986436499113e03 / (6744 / sizer[0])
focallength_y = 4.513311442889859e03 / (4502 / sizer[1])
K = np.eye(3)
K[0, 0] = focallength_x
K[1, 1] = focallength_y
K[0, 2] = 3.363322177533149e03 / (6744 / sizer[0])  # * 0.5
K[1, 2] = 2.291824660547715e03 / (4502 / sizer[1])  # * 0.5


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="DarkFeat demo",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument("--input", type=str, help="path to an image directory")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=None,
        help="Directory where to write output frames (If None, no output)",
    )

    parser.add_argument(
        "--image_glob",
        type=str,
        nargs="+",
        default=["*.ARW"],
        help="Glob if a directory of images is specified",
    )
    parser.add_argument(
        "--resize",
        type=int,
        nargs="+",
        default=[640, 480],
        help="Resize the input image before running inference. If two numbers, "
        "resize to the exact dimensions, if one number, resize the max "
        "dimension, if -1, do not resize",
    )
    parser.add_argument(
        "--force_cpu", action="store_true", help="Force pytorch to run in CPU mode."
    )
    parser.add_argument("--model_path", type=str, help="Path to the pretrained model")

    opt = parser.parse_args()
    print(opt)

    assert len(opt.resize) == 2
    print("Will resize to {}x{} (WxH)".format(opt.resize[0], opt.resize[1]))

    device = "cuda" if torch.cuda.is_available() and not opt.force_cpu else "cpu"
    print('Running inference on device "{}"'.format(device))
    matching = NNMatching(opt.model_path).eval().to(device)
    keys = ["keypoints", "scores", "descriptors"]

    vs = VideoStreamer(opt.input, opt.resize, opt.image_glob)
    frame, ret = vs.next_frame()
    assert ret, "Error when reading the first frame (try different --input?)"

    frame_tensor = frame2tensor(frame, device)
    last_data = matching.darkfeat({"image": frame_tensor})
    last_data = {k + "0": [last_data[k]] for k in keys}
    last_data["image0"] = frame_tensor
    last_frame = frame
    last_image_id = 0

    if opt.output_dir is not None:
        print("==> Will write outputs to {}".format(opt.output_dir))
        Path(opt.output_dir).mkdir(exist_ok=True)

    timer = AverageTimer()

    while True:
        frame, ret = vs.next_frame()
        if not ret:
            print("Finished demo_darkfeat.py")
            break
        timer.update("data")
        stem0, stem1 = last_image_id, vs.i - 1

        frame_tensor = frame2tensor(frame, device)
        pred = matching({**last_data, "image1": frame_tensor})
        kpts0 = last_data["keypoints0"][0].cpu().numpy()
        kpts1 = pred["keypoints1"][0].cpu().numpy()
        matches = pred["matches0"][0].cpu().numpy()
        confidence = pred["matching_scores0"][0].cpu().numpy()
        timer.update("forward")

        valid = matches > -1
        mkpts0 = kpts0[valid]
        mkpts1 = kpts1[matches[valid]]

        E, inliers, pts1, pts2 = compute_essential(mkpts0, mkpts1, K)
        color = cm.jet(
            np.clip(confidence[valid][inliers[:, 0].astype("bool")] * 2 - 1, -1, 1)
        )

        text = ["DarkFeat", "Matches: {}".format(inliers.sum())]

        out = make_matching_plot_fast(
            last_frame,
            frame,
            mkpts0[inliers[:, 0].astype("bool")],
            mkpts1[inliers[:, 0].astype("bool")],
            color,
            text,
            path=None,
            small_text=" ",
        )

        if opt.output_dir is not None:
            stem = "matches_{:06}_{:06}".format(stem0, stem1)
            out_file = str(Path(opt.output_dir, stem + ".png"))
            print("Writing image to {}".format(out_file))
            cv2.imwrite(out_file, out)