File size: 11,561 Bytes
9223079
 
1928ea3
9223079
8b9ccdd
 
 
 
9223079
 
8b9ccdd
 
 
8b973ee
8b9ccdd
9223079
8b9ccdd
9223079
 
 
 
 
 
 
8b9ccdd
 
 
 
 
 
5c1ffd8
8b9ccdd
 
 
 
 
9223079
 
 
 
 
 
 
5c1ffd8
9223079
8b9ccdd
 
9223079
 
 
 
8b9ccdd
 
9223079
5c1ffd8
 
 
9223079
 
8b9ccdd
 
5c1ffd8
8b9ccdd
 
 
 
 
9223079
 
 
8b9ccdd
9223079
8b9ccdd
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60ad158
8b9ccdd
5c1ffd8
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60ad158
8b9ccdd
 
 
 
 
 
 
9223079
8b9ccdd
9223079
 
8b9ccdd
 
9223079
 
 
 
5c1ffd8
8b9ccdd
 
 
 
 
9223079
 
 
 
 
 
8b9ccdd
9223079
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
5c1ffd8
 
 
 
8b9ccdd
 
5c1ffd8
8b9ccdd
 
 
 
5c1ffd8
 
 
 
 
 
9223079
 
 
8b9ccdd
 
 
9223079
 
8b9ccdd
 
 
9223079
 
 
 
5c1ffd8
 
 
9223079
 
8b9ccdd
 
9223079
 
 
 
 
 
8b9ccdd
 
9223079
 
 
 
 
 
 
5c1ffd8
 
 
9223079
 
8b9ccdd
 
5c1ffd8
8b9ccdd
 
 
 
 
9223079
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62cd4d6
9223079
 
 
 
 
8b9ccdd
 
 
 
9223079
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import argparse
import gradio as gr
from common.utils import (
    matcher_zoo,
    change_estimate_geom,
    run_matching,
    ransac_zoo,
    gen_examples,
)

DESCRIPTION = """
# Image Matching WebUI
This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/image-matching-webui) by vincent qin. Feel free to play with it, or duplicate to run image matching without a queue!

🔎 For more details about supported local features and matchers, please refer to https://github.com/Vincentqyw/image-matching-webui

"""


def ui_change_imagebox(choice):
    return {"value": None, "source": choice, "__type__": "update"}


def ui_reset_state(
    image0,
    image1,
    match_threshold,
    extract_max_keypoints,
    keypoint_threshold,
    key,
    # enable_ransac=False,
    ransac_method="RANSAC",
    ransac_reproj_threshold=8,
    ransac_confidence=0.999,
    ransac_max_iter=10000,
    choice_estimate_geom="Homography",
):
    match_threshold = 0.2
    extract_max_keypoints = 1000
    keypoint_threshold = 0.015
    key = list(matcher_zoo.keys())[0]
    image0 = None
    image1 = None
    # enable_ransac = False
    return (
        image0,
        image1,
        match_threshold,
        extract_max_keypoints,
        keypoint_threshold,
        key,
        ui_change_imagebox("upload"),
        ui_change_imagebox("upload"),
        "upload",
        None,  # keypoints
        None,  # raw matches
        None,  # ransac matches
        {},
        {},
        None,
        {},
        # False,
        "RANSAC",
        8,
        0.999,
        10000,
        "Homography",
    )


# "footer {visibility: hidden}"
def run(config):
    with gr.Blocks(css="style.css") as app:
        gr.Markdown(DESCRIPTION)

        with gr.Row(equal_height=False):
            with gr.Column():
                with gr.Row():
                    matcher_list = gr.Dropdown(
                        choices=list(matcher_zoo.keys()),
                        value="disk+lightglue",
                        label="Matching Model",
                        interactive=True,
                    )
                    match_image_src = gr.Radio(
                        ["upload", "webcam", "canvas"],
                        label="Image Source",
                        value="upload",
                    )
                with gr.Row():
                    input_image0 = gr.Image(
                        label="Image 0",
                        type="numpy",
                        interactive=True,
                        image_mode="RGB",
                    )
                    input_image1 = gr.Image(
                        label="Image 1",
                        type="numpy",
                        interactive=True,
                        image_mode="RGB",
                    )

                with gr.Row():
                    button_reset = gr.Button(label="Reset", value="Reset")
                    button_run = gr.Button(
                        label="Run Match", value="Run Match", variant="primary"
                    )

                with gr.Accordion("Advanced Setting", open=False):
                    with gr.Accordion("Matching Setting", open=True):
                        with gr.Row():
                            match_setting_threshold = gr.Slider(
                                minimum=0.0,
                                maximum=1,
                                step=0.001,
                                label="Match thres.",
                                value=0.1,
                            )
                            match_setting_max_features = gr.Slider(
                                minimum=10,
                                maximum=10000,
                                step=10,
                                label="Max features",
                                value=1000,
                            )
                        # TODO: add line settings
                        with gr.Row():
                            detect_keypoints_threshold = gr.Slider(
                                minimum=0,
                                maximum=1,
                                step=0.001,
                                label="Keypoint thres.",
                                value=0.015,
                            )
                            detect_line_threshold = gr.Slider(
                                minimum=0.1,
                                maximum=1,
                                step=0.01,
                                label="Line thres.",
                                value=0.2,
                            )
                        # matcher_lists = gr.Radio(
                        #     ["NN-mutual", "Dual-Softmax"],
                        #     label="Matcher mode",
                        #     value="NN-mutual",
                        # )
                    with gr.Accordion("RANSAC Setting", open=True):
                        with gr.Row(equal_height=False):
                            # enable_ransac = gr.Checkbox(label="Enable RANSAC")
                            ransac_method = gr.Dropdown(
                                choices=ransac_zoo.keys(),
                                value="RANSAC",
                                label="RANSAC Method",
                                interactive=True,
                            )
                        ransac_reproj_threshold = gr.Slider(
                            minimum=0.0,
                            maximum=12,
                            step=0.01,
                            label="Ransac Reproj threshold",
                            value=8.0,
                        )
                        ransac_confidence = gr.Slider(
                            minimum=0.0,
                            maximum=1,
                            step=0.00001,
                            label="Ransac Confidence",
                            value=0.99999,
                        )
                        ransac_max_iter = gr.Slider(
                            minimum=0.0,
                            maximum=100000,
                            step=100,
                            label="Ransac Iterations",
                            value=10000,
                        )

                    with gr.Accordion("Geometry Setting", open=False):
                        with gr.Row(equal_height=False):
                            # show_geom = gr.Checkbox(label="Show Geometry")
                            choice_estimate_geom = gr.Radio(
                                ["Fundamental", "Homography"],
                                label="Reconstruct Geometry",
                                value="Homography",
                            )

                # with gr.Column():
                # collect inputs
                inputs = [
                    input_image0,
                    input_image1,
                    match_setting_threshold,
                    match_setting_max_features,
                    detect_keypoints_threshold,
                    matcher_list,
                    # enable_ransac,
                    ransac_method,
                    ransac_reproj_threshold,
                    ransac_confidence,
                    ransac_max_iter,
                    choice_estimate_geom,
                ]

                # Add some examples
                with gr.Row():
                    # Example inputs
                    gr.Examples(
                        examples=gen_examples(),
                        inputs=inputs,
                        outputs=[],
                        fn=run_matching,
                        cache_examples=False,
                        label=(
                            "Examples (click one of the images below to Run"
                            " Match)"
                        ),
                    )
                with gr.Accordion("Open for More!", open=False):
                    gr.Markdown(
                        f"""
                        <h3>Supported Algorithms</h3>
                        {", ".join(matcher_zoo.keys())}
                        """
                    )

            with gr.Column():
                output_keypoints = gr.Image(label="Keypoints", type="numpy")
                output_matches_raw = gr.Image(label="Raw Matches", type="numpy")
                output_matches_ransac = gr.Image(
                    label="Ransac Matches", type="numpy"
                )
                with gr.Accordion(
                    "Open for More: Matches Statistics", open=False
                ):
                    matches_result_info = gr.JSON(label="Matches Statistics")
                    matcher_info = gr.JSON(label="Match info")

                with gr.Accordion("Open for More: Warped Image", open=False):
                    output_wrapped = gr.Image(
                        label="Wrapped Pair", type="numpy"
                    )
                    with gr.Accordion("Open for More: Geometry info", open=False):
                        geometry_result = gr.JSON(label="Reconstructed Geometry")

            # callbacks
            match_image_src.change(
                fn=ui_change_imagebox,
                inputs=match_image_src,
                outputs=input_image0,
            )
            match_image_src.change(
                fn=ui_change_imagebox,
                inputs=match_image_src,
                outputs=input_image1,
            )

            # collect outputs
            outputs = [
                output_keypoints,
                output_matches_raw,
                output_matches_ransac,
                matches_result_info,
                matcher_info,
                geometry_result,
                output_wrapped,
            ]
            # button callbacks
            button_run.click(fn=run_matching, inputs=inputs, outputs=outputs)

            # Reset images
            reset_outputs = [
                input_image0,
                input_image1,
                match_setting_threshold,
                match_setting_max_features,
                detect_keypoints_threshold,
                matcher_list,
                input_image0,
                input_image1,
                match_image_src,
                output_keypoints,
                output_matches_raw,
                output_matches_ransac,
                matches_result_info,
                matcher_info,
                output_wrapped,
                geometry_result,
                # enable_ransac,
                ransac_method,
                ransac_reproj_threshold,
                ransac_confidence,
                ransac_max_iter,
                choice_estimate_geom,
            ]
            button_reset.click(
                fn=ui_reset_state, inputs=inputs, outputs=reset_outputs
            )

            # estimate geo
            choice_estimate_geom.change(
                fn=change_estimate_geom,
                inputs=[
                    input_image0,
                    input_image1,
                    geometry_result,
                    choice_estimate_geom,
                ],
                outputs=[output_wrapped, geometry_result],
            )

    app.queue().launch(share=False)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config_path",
        type=str,
        default="config.yaml",
        help="configuration file path",
    )
    args = parser.parse_args()
    config = None
    run(config)