File size: 4,379 Bytes
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60ad158
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60ad158
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from pathlib import Path
import argparse

from .utils import create_reference_sfm
from .create_gt_sfm import correct_sfm_with_gt_depth
from ..Cambridge.utils import create_query_list_with_intrinsics, evaluate
from ... import extract_features, match_features, pairs_from_covisibility
from ... import triangulation, localize_sfm, logger

SCENES = ["chess", "fire", "heads", "office", "pumpkin", "redkitchen", "stairs"]


def run_scene(
    images,
    gt_dir,
    retrieval,
    outputs,
    results,
    num_covis,
    use_dense_depth,
    depth_dir=None,
):
    outputs.mkdir(exist_ok=True, parents=True)
    ref_sfm_sift = outputs / "sfm_sift"
    ref_sfm = outputs / "sfm_superpoint+superglue"
    query_list = outputs / "query_list_with_intrinsics.txt"

    feature_conf = {
        "output": "feats-superpoint-n4096-r1024",
        "model": {
            "name": "superpoint",
            "nms_radius": 3,
            "max_keypoints": 4096,
        },
        "preprocessing": {
            "globs": ["*.color.png"],
            "grayscale": True,
            "resize_max": 1024,
        },
    }
    matcher_conf = match_features.confs["superglue"]
    matcher_conf["model"]["sinkhorn_iterations"] = 5

    test_list = gt_dir / "list_test.txt"
    create_reference_sfm(gt_dir, ref_sfm_sift, test_list)
    create_query_list_with_intrinsics(gt_dir, query_list, test_list)

    features = extract_features.main(
        feature_conf, images, outputs, as_half=True
    )

    sfm_pairs = outputs / f"pairs-db-covis{num_covis}.txt"
    pairs_from_covisibility.main(ref_sfm_sift, sfm_pairs, num_matched=num_covis)
    sfm_matches = match_features.main(
        matcher_conf, sfm_pairs, feature_conf["output"], outputs
    )
    if not (use_dense_depth and ref_sfm.exists()):
        triangulation.main(
            ref_sfm, ref_sfm_sift, images, sfm_pairs, features, sfm_matches
        )
    if use_dense_depth:
        assert depth_dir is not None
        ref_sfm_fix = outputs / "sfm_superpoint+superglue+depth"
        correct_sfm_with_gt_depth(ref_sfm, depth_dir, ref_sfm_fix)
        ref_sfm = ref_sfm_fix

    loc_matches = match_features.main(
        matcher_conf, retrieval, feature_conf["output"], outputs
    )

    localize_sfm.main(
        ref_sfm,
        query_list,
        retrieval,
        features,
        loc_matches,
        results,
        covisibility_clustering=False,
        prepend_camera_name=True,
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--scenes", default=SCENES, choices=SCENES, nargs="+")
    parser.add_argument("--overwrite", action="store_true")
    parser.add_argument(
        "--dataset",
        type=Path,
        default="datasets/7scenes",
        help="Path to the dataset, default: %(default)s",
    )
    parser.add_argument(
        "--outputs",
        type=Path,
        default="outputs/7scenes",
        help="Path to the output directory, default: %(default)s",
    )
    parser.add_argument("--use_dense_depth", action="store_true")
    parser.add_argument(
        "--num_covis",
        type=int,
        default=30,
        help="Number of image pairs for SfM, default: %(default)s",
    )
    args = parser.parse_args()

    gt_dirs = args.dataset / "7scenes_sfm_triangulated/{scene}/triangulated"
    retrieval_dirs = args.dataset / "7scenes_densevlad_retrieval_top_10"

    all_results = {}
    for scene in args.scenes:
        logger.info(f'Working on scene "{scene}".')
        results = (
            args.outputs
            / scene
            / "results_{}.txt".format(
                "dense" if args.use_dense_depth else "sparse"
            )
        )
        if args.overwrite or not results.exists():
            run_scene(
                args.dataset / scene,
                Path(str(gt_dirs).format(scene=scene)),
                retrieval_dirs / f"{scene}_top10.txt",
                args.outputs / scene,
                results,
                args.num_covis,
                args.use_dense_depth,
                depth_dir=args.dataset / f"depth/7scenes_{scene}/train/depth",
            )
        all_results[scene] = results

    for scene in args.scenes:
        logger.info(f'Evaluate scene "{scene}".')
        gt_dir = Path(str(gt_dirs).format(scene=scene))
        evaluate(gt_dir, all_results[scene], gt_dir / "list_test.txt")