File size: 4,151 Bytes
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
62c7319
 
 
 
 
 
 
 
8b973ee
 
 
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from PIL import Image
import numpy as np

import os

from tqdm import tqdm
from dkm.utils import pose_auc
import cv2


class HpatchesHomogBenchmark:
    """Hpatches grid goes from [0,n-1] instead of [0.5,n-0.5]"""

    def __init__(self, dataset_path) -> None:
        seqs_dir = "hpatches-sequences-release"
        self.seqs_path = os.path.join(dataset_path, seqs_dir)
        self.seq_names = sorted(os.listdir(self.seqs_path))
        # Ignore seqs is same as LoFTR.
        self.ignore_seqs = set(
            [
                "i_contruction",
                "i_crownnight",
                "i_dc",
                "i_pencils",
                "i_whitebuilding",
                "v_artisans",
                "v_astronautis",
                "v_talent",
            ]
        )

    def convert_coordinates(self, query_coords, query_to_support, wq, hq, wsup, hsup):
        offset = 0.5  # Hpatches assumes that the center of the top-left pixel is at [0,0] (I think)
        query_coords = (
            np.stack(
                (
                    wq * (query_coords[..., 0] + 1) / 2,
                    hq * (query_coords[..., 1] + 1) / 2,
                ),
                axis=-1,
            )
            - offset
        )
        query_to_support = (
            np.stack(
                (
                    wsup * (query_to_support[..., 0] + 1) / 2,
                    hsup * (query_to_support[..., 1] + 1) / 2,
                ),
                axis=-1,
            )
            - offset
        )
        return query_coords, query_to_support

    def benchmark(self, model, model_name=None):
        n_matches = []
        homog_dists = []
        for seq_idx, seq_name in tqdm(
            enumerate(self.seq_names), total=len(self.seq_names)
        ):
            if seq_name in self.ignore_seqs:
                continue
            im1_path = os.path.join(self.seqs_path, seq_name, "1.ppm")
            im1 = Image.open(im1_path)
            w1, h1 = im1.size
            for im_idx in range(2, 7):
                im2_path = os.path.join(self.seqs_path, seq_name, f"{im_idx}.ppm")
                im2 = Image.open(im2_path)
                w2, h2 = im2.size
                H = np.loadtxt(
                    os.path.join(self.seqs_path, seq_name, "H_1_" + str(im_idx))
                )
                dense_matches, dense_certainty = model.match(im1_path, im2_path)
                good_matches, _ = model.sample(dense_matches, dense_certainty, 5000)
                pos_a, pos_b = self.convert_coordinates(
                    good_matches[:, :2], good_matches[:, 2:], w1, h1, w2, h2
                )
                try:
                    H_pred, inliers = cv2.findHomography(
                        pos_a,
                        pos_b,
                        method=cv2.RANSAC,
                        confidence=0.99999,
                        ransacReprojThreshold=3 * min(w2, h2) / 480,
                    )
                except:
                    H_pred = None
                if H_pred is None:
                    H_pred = np.zeros((3, 3))
                    H_pred[2, 2] = 1.0
                corners = np.array(
                    [[0, 0, 1], [0, h1 - 1, 1], [w1 - 1, 0, 1], [w1 - 1, h1 - 1, 1]]
                )
                real_warped_corners = np.dot(corners, np.transpose(H))
                real_warped_corners = (
                    real_warped_corners[:, :2] / real_warped_corners[:, 2:]
                )
                warped_corners = np.dot(corners, np.transpose(H_pred))
                warped_corners = warped_corners[:, :2] / warped_corners[:, 2:]
                mean_dist = np.mean(
                    np.linalg.norm(real_warped_corners - warped_corners, axis=1)
                ) / (min(w2, h2) / 480.0)
                homog_dists.append(mean_dist)
        n_matches = np.array(n_matches)
        thresholds = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        auc = pose_auc(np.array(homog_dists), thresholds)
        return {
            "hpatches_homog_auc_3": auc[2],
            "hpatches_homog_auc_5": auc[4],
            "hpatches_homog_auc_10": auc[9],
        }