File size: 7,726 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import torch
def build_descriptor_loss(
source_des, target_des, tar_points_un, top_kk=None, relax_field=4, eval_only=False
):
"""
Desc Head Loss, per-pixel level triplet loss from https://arxiv.org/pdf/1902.11046.pdf.
Parameters
----------
source_des: torch.Tensor (B,256,H/8,W/8)
Source image descriptors.
target_des: torch.Tensor (B,256,H/8,W/8)
Target image descriptors.
source_points: torch.Tensor (B,H/8,W/8,2)
Source image keypoints
tar_points: torch.Tensor (B,H/8,W/8,2)
Target image keypoints
tar_points_un: torch.Tensor (B,2,H/8,W/8)
Target image keypoints unnormalized
eval_only: bool
Computes only recall without the loss.
Returns
-------
loss: torch.Tensor
Descriptor loss.
recall: torch.Tensor
Descriptor match recall.
"""
device = source_des.device
loss = 0
batch_size = source_des.size(0)
recall = 0.0
relax_field_size = [relax_field]
margins = [1.0]
weights = [1.0]
isource_dense = top_kk is None
for b_id in range(batch_size):
if isource_dense:
ref_desc = source_des[b_id].squeeze().view(256, -1)
tar_desc = target_des[b_id].squeeze().view(256, -1)
tar_points_raw = tar_points_un[b_id].view(2, -1)
else:
top_k = top_kk[b_id].squeeze()
n_feat = top_k.sum().item()
if n_feat < 20:
continue
ref_desc = source_des[b_id].squeeze()[:, top_k]
tar_desc = target_des[b_id].squeeze()[:, top_k]
tar_points_raw = tar_points_un[b_id][:, top_k]
# Compute dense descriptor distance matrix and find nearest neighbor
ref_desc = ref_desc.div(torch.norm(ref_desc, p=2, dim=0))
tar_desc = tar_desc.div(torch.norm(tar_desc, p=2, dim=0))
dmat = torch.mm(ref_desc.t(), tar_desc)
dmat = torch.sqrt(2 - 2 * torch.clamp(dmat, min=-1, max=1))
_, idx = torch.sort(dmat, dim=1)
# Compute triplet loss and recall
for pyramid in range(len(relax_field_size)):
candidates = idx.t()
match_k_x = tar_points_raw[0, candidates]
match_k_y = tar_points_raw[1, candidates]
tru_x = tar_points_raw[0]
tru_y = tar_points_raw[1]
if pyramid == 0:
correct2 = (abs(match_k_x[0] - tru_x) == 0) & (
abs(match_k_y[0] - tru_y) == 0
)
correct2_cnt = correct2.float().sum()
recall += float(1.0 / batch_size) * (
float(correct2_cnt) / float(ref_desc.size(1))
)
if eval_only:
continue
correct_k = (abs(match_k_x - tru_x) <= relax_field_size[pyramid]) & (
abs(match_k_y - tru_y) <= relax_field_size[pyramid]
)
incorrect_index = (
torch.arange(start=correct_k.shape[0] - 1, end=-1, step=-1)
.unsqueeze(1)
.repeat(1, correct_k.shape[1])
.to(device)
)
incorrect_first = torch.argmax(
incorrect_index * (1 - correct_k.long()), dim=0
)
incorrect_first_index = candidates.gather(
0, incorrect_first.unsqueeze(0)
).squeeze()
anchor_var = ref_desc
posource_var = tar_desc
neg_var = tar_desc[:, incorrect_first_index]
loss += float(1.0 / batch_size) * torch.nn.functional.triplet_margin_loss(
anchor_var.t(), posource_var.t(), neg_var.t(), margin=margins[pyramid]
).mul(weights[pyramid])
return loss, recall
class KeypointLoss(object):
"""
Loss function class encapsulating the location loss, the descriptor loss, and the score loss.
"""
def __init__(self, config):
self.score_weight = config.score_weight
self.loc_weight = config.loc_weight
self.desc_weight = config.desc_weight
self.corres_weight = config.corres_weight
self.corres_threshold = config.corres_threshold
def __call__(self, data):
B, _, hc, wc = data["source_score"].shape
loc_mat_abs = torch.abs(
data["target_coord_warped"].view(B, 2, -1).unsqueeze(3)
- data["target_coord"].view(B, 2, -1).unsqueeze(2)
)
l2_dist_loc_mat = torch.norm(loc_mat_abs, p=2, dim=1)
l2_dist_loc_min, l2_dist_loc_min_index = l2_dist_loc_mat.min(dim=2)
# construct pseudo ground truth matching matrix
loc_min_mat = torch.repeat_interleave(
l2_dist_loc_min.unsqueeze(dim=-1), repeats=l2_dist_loc_mat.shape[-1], dim=-1
)
pos_mask = l2_dist_loc_mat.eq(loc_min_mat) & l2_dist_loc_mat.le(1.0)
neg_mask = l2_dist_loc_mat.ge(4.0)
pos_corres = -torch.log(data["confidence_matrix"][pos_mask])
neg_corres = -torch.log(1.0 - data["confidence_matrix"][neg_mask])
corres_loss = pos_corres.mean() + 5e5 * neg_corres.mean()
# corresponding distance threshold is 4
dist_norm_valid_mask = l2_dist_loc_min.lt(self.corres_threshold) & data[
"border_mask"
].view(B, hc * wc)
# location loss
loc_loss = l2_dist_loc_min[dist_norm_valid_mask].mean()
# desc Head Loss, per-pixel level triplet loss from https://arxiv.org/pdf/1902.11046.pdf.
desc_loss, _ = build_descriptor_loss(
data["source_desc"],
data["target_desc_warped"],
data["target_coord_warped"].detach(),
top_kk=data["border_mask"],
relax_field=8,
)
# score loss
target_score_associated = (
data["target_score"]
.view(B, hc * wc)
.gather(1, l2_dist_loc_min_index)
.view(B, hc, wc)
.unsqueeze(1)
)
dist_norm_valid_mask = dist_norm_valid_mask.view(B, hc, wc).unsqueeze(1) & data[
"border_mask"
].unsqueeze(1)
l2_dist_loc_min = l2_dist_loc_min.view(B, hc, wc).unsqueeze(1)
loc_err = l2_dist_loc_min[dist_norm_valid_mask]
# repeatable_constrain in score loss
repeatable_constrain = (
(
target_score_associated[dist_norm_valid_mask]
+ data["source_score"][dist_norm_valid_mask]
)
* (loc_err - loc_err.mean())
).mean()
# consistent_constrain in score_loss
consistent_constrain = (
torch.nn.functional.mse_loss(
data["target_score_warped"][data["border_mask"].unsqueeze(1)],
data["source_score"][data["border_mask"].unsqueeze(1)],
).mean()
* 2
)
aware_consistent_loss = (
torch.nn.functional.mse_loss(
data["target_aware_warped"][
data["border_mask"].unsqueeze(1).repeat(1, 2, 1, 1)
],
data["source_aware"][
data["border_mask"].unsqueeze(1).repeat(1, 2, 1, 1)
],
).mean()
* 2
)
score_loss = repeatable_constrain + consistent_constrain + aware_consistent_loss
loss = (
self.loc_weight * loc_loss
+ self.desc_weight * desc_loss
+ self.score_weight * score_loss
+ self.corres_weight * corres_loss
)
return (
loss,
self.loc_weight * loc_loss,
self.desc_weight * desc_loss,
self.score_weight * score_loss,
self.corres_weight * corres_loss,
)
|