File size: 6,448 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import copy
import os
import cv2
import glob
import logging
import argparse
import numpy as np
from tqdm import tqdm
from alike import ALike, configs
class ImageLoader(object):
def __init__(self, filepath: str):
self.N = 3000
if filepath.startswith('camera'):
camera = int(filepath[6:])
self.cap = cv2.VideoCapture(camera)
if not self.cap.isOpened():
raise IOError(f"Can't open camera {camera}!")
logging.info(f'Opened camera {camera}')
self.mode = 'camera'
elif os.path.exists(filepath):
if os.path.isfile(filepath):
self.cap = cv2.VideoCapture(filepath)
if not self.cap.isOpened():
raise IOError(f"Can't open video {filepath}!")
rate = self.cap.get(cv2.CAP_PROP_FPS)
self.N = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
duration = self.N / rate
logging.info(f'Opened video {filepath}')
logging.info(f'Frames: {self.N}, FPS: {rate}, Duration: {duration}s')
self.mode = 'video'
else:
self.images = glob.glob(os.path.join(filepath, '*.png')) + \
glob.glob(os.path.join(filepath, '*.jpg')) + \
glob.glob(os.path.join(filepath, '*.ppm'))
self.images.sort()
self.N = len(self.images)
logging.info(f'Loading {self.N} images')
self.mode = 'images'
else:
raise IOError('Error filepath (camerax/path of images/path of videos): ', filepath)
def __getitem__(self, item):
if self.mode == 'camera' or self.mode == 'video':
if item > self.N:
return None
ret, img = self.cap.read()
if not ret:
raise "Can't read image from camera"
if self.mode == 'video':
self.cap.set(cv2.CAP_PROP_POS_FRAMES, item)
elif self.mode == 'images':
filename = self.images[item]
img = cv2.imread(filename)
if img is None:
raise Exception('Error reading image %s' % filename)
return img
def __len__(self):
return self.N
class SimpleTracker(object):
def __init__(self):
self.pts_prev = None
self.desc_prev = None
def update(self, img, pts, desc):
N_matches = 0
if self.pts_prev is None:
self.pts_prev = pts
self.desc_prev = desc
out = copy.deepcopy(img)
for pt1 in pts:
p1 = (int(round(pt1[0])), int(round(pt1[1])))
cv2.circle(out, p1, 1, (0, 0, 255), -1, lineType=16)
else:
matches = self.mnn_mather(self.desc_prev, desc)
mpts1, mpts2 = self.pts_prev[matches[:, 0]], pts[matches[:, 1]]
N_matches = len(matches)
out = copy.deepcopy(img)
for pt1, pt2 in zip(mpts1, mpts2):
p1 = (int(round(pt1[0])), int(round(pt1[1])))
p2 = (int(round(pt2[0])), int(round(pt2[1])))
cv2.line(out, p1, p2, (0, 255, 0), lineType=16)
cv2.circle(out, p2, 1, (0, 0, 255), -1, lineType=16)
self.pts_prev = pts
self.desc_prev = desc
return out, N_matches
def mnn_mather(self, desc1, desc2):
sim = desc1 @ desc2.transpose()
sim[sim < 0.9] = 0
nn12 = np.argmax(sim, axis=1)
nn21 = np.argmax(sim, axis=0)
ids1 = np.arange(0, sim.shape[0])
mask = (ids1 == nn21[nn12])
matches = np.stack([ids1[mask], nn12[mask]])
return matches.transpose()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ALike Demo.')
parser.add_argument('input', type=str, default='',
help='Image directory or movie file or "camera0" (for webcam0).')
parser.add_argument('--model', choices=['alike-t', 'alike-s', 'alike-n', 'alike-l'], default="alike-t",
help="The model configuration")
parser.add_argument('--device', type=str, default='cuda', help="Running device (default: cuda).")
parser.add_argument('--top_k', type=int, default=-1,
help='Detect top K keypoints. -1 for threshold based mode, >0 for top K mode. (default: -1)')
parser.add_argument('--scores_th', type=float, default=0.2,
help='Detector score threshold (default: 0.2).')
parser.add_argument('--n_limit', type=int, default=5000,
help='Maximum number of keypoints to be detected (default: 5000).')
parser.add_argument('--no_display', action='store_true',
help='Do not display images to screen. Useful if running remotely (default: False).')
parser.add_argument('--no_sub_pixel', action='store_true',
help='Do not detect sub-pixel keypoints (default: False).')
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
image_loader = ImageLoader(args.input)
model = ALike(**configs[args.model],
device=args.device,
top_k=args.top_k,
scores_th=args.scores_th,
n_limit=args.n_limit)
tracker = SimpleTracker()
if not args.no_display:
logging.info("Press 'q' to stop!")
cv2.namedWindow(args.model)
runtime = []
progress_bar = tqdm(image_loader)
for img in progress_bar:
if img is None:
break
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pred = model(img_rgb, sub_pixel=not args.no_sub_pixel)
kpts = pred['keypoints']
desc = pred['descriptors']
runtime.append(pred['time'])
out, N_matches = tracker.update(img, kpts, desc)
ave_fps = (1. / np.stack(runtime)).mean()
status = f"Fps:{ave_fps:.1f}, Keypoints/Matches: {len(kpts)}/{N_matches}"
progress_bar.set_description(status)
if not args.no_display:
cv2.setWindowTitle(args.model, args.model + ': ' + status)
cv2.imshow(args.model, out)
if cv2.waitKey(1) == ord('q'):
break
logging.info('Finished!')
if not args.no_display:
logging.info('Press any key to exit!')
cv2.waitKey()
|