File size: 10,465 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import torch
import torch.nn.functional as F
from .geom import rnd_sample, interpolate, get_dist_mat
def make_detector_loss(pos0, pos1, dense_feat_map0, dense_feat_map1,
score_map0, score_map1, batch_size, num_corr, loss_type, config):
joint_loss = 0.
accuracy = 0.
all_valid_pos0 = []
all_valid_pos1 = []
all_valid_match = []
for i in range(batch_size):
# random sample
valid_pos0, valid_pos1 = rnd_sample([pos0[i], pos1[i]], num_corr)
valid_num = valid_pos0.shape[0]
valid_feat0 = interpolate(valid_pos0 / 4, dense_feat_map0[i])
valid_feat1 = interpolate(valid_pos1 / 4, dense_feat_map1[i])
valid_feat0 = F.normalize(valid_feat0, p=2, dim=-1)
valid_feat1 = F.normalize(valid_feat1, p=2, dim=-1)
valid_score0 = interpolate(valid_pos0, torch.squeeze(score_map0[i], dim=-1), nd=False)
valid_score1 = interpolate(valid_pos1, torch.squeeze(score_map1[i], dim=-1), nd=False)
if config['network']['det']['corr_weight']:
corr_weight = valid_score0 * valid_score1
else:
corr_weight = None
safe_radius = config['network']['det']['safe_radius']
if safe_radius > 0:
radius_mask_row = get_dist_mat(
valid_pos1, valid_pos1, "euclidean_dist_no_norm")
radius_mask_row = torch.le(radius_mask_row, safe_radius)
radius_mask_col = get_dist_mat(
valid_pos0, valid_pos0, "euclidean_dist_no_norm")
radius_mask_col = torch.le(radius_mask_col, safe_radius)
radius_mask_row = radius_mask_row.float() - torch.eye(valid_num, device=radius_mask_row.device)
radius_mask_col = radius_mask_col.float() - torch.eye(valid_num, device=radius_mask_col.device)
else:
radius_mask_row = None
radius_mask_col = None
if valid_num < 32:
si_loss, si_accuracy, matched_mask = 0., 1., torch.zeros((1, valid_num)).bool()
else:
si_loss, si_accuracy, matched_mask = make_structured_loss(
torch.unsqueeze(valid_feat0, 0), torch.unsqueeze(valid_feat1, 0),
loss_type=loss_type,
radius_mask_row=radius_mask_row, radius_mask_col=radius_mask_col,
corr_weight=torch.unsqueeze(corr_weight, 0) if corr_weight is not None else None
)
joint_loss += si_loss / batch_size
accuracy += si_accuracy / batch_size
all_valid_match.append(torch.squeeze(matched_mask, dim=0))
all_valid_pos0.append(valid_pos0)
all_valid_pos1.append(valid_pos1)
return joint_loss, accuracy
def make_structured_loss(feat_anc, feat_pos,
loss_type='RATIO', inlier_mask=None,
radius_mask_row=None, radius_mask_col=None,
corr_weight=None, dist_mat=None):
"""
Structured loss construction.
Args:
feat_anc, feat_pos: Feature matrix.
loss_type: Loss type.
inlier_mask:
Returns:
"""
batch_size = feat_anc.shape[0]
num_corr = feat_anc.shape[1]
if inlier_mask is None:
inlier_mask = torch.ones((batch_size, num_corr), device=feat_anc.device).bool()
inlier_num = torch.count_nonzero(inlier_mask.float(), dim=-1)
if loss_type == 'L2NET' or loss_type == 'CIRCLE':
dist_type = 'cosine_dist'
elif loss_type.find('HARD') >= 0:
dist_type = 'euclidean_dist'
else:
raise NotImplementedError()
if dist_mat is None:
dist_mat = get_dist_mat(feat_anc.squeeze(0), feat_pos.squeeze(0), dist_type).unsqueeze(0)
pos_vec = dist_mat[0].diag().unsqueeze(0)
if loss_type.find('HARD') >= 0:
neg_margin = 1
dist_mat_without_min_on_diag = dist_mat + \
10 * torch.unsqueeze(torch.eye(num_corr, device=dist_mat.device), dim=0)
mask = torch.le(dist_mat_without_min_on_diag, 0.008).float()
dist_mat_without_min_on_diag += mask*10
if radius_mask_row is not None:
hard_neg_dist_row = dist_mat_without_min_on_diag + 10 * radius_mask_row
else:
hard_neg_dist_row = dist_mat_without_min_on_diag
if radius_mask_col is not None:
hard_neg_dist_col = dist_mat_without_min_on_diag + 10 * radius_mask_col
else:
hard_neg_dist_col = dist_mat_without_min_on_diag
hard_neg_dist_row = torch.min(hard_neg_dist_row, dim=-1)[0]
hard_neg_dist_col = torch.min(hard_neg_dist_col, dim=-2)[0]
if loss_type == 'HARD_TRIPLET':
loss_row = torch.clamp(neg_margin + pos_vec - hard_neg_dist_row, min=0)
loss_col = torch.clamp(neg_margin + pos_vec - hard_neg_dist_col, min=0)
elif loss_type == 'HARD_CONTRASTIVE':
pos_margin = 0.2
pos_loss = torch.clamp(pos_vec - pos_margin, min=0)
loss_row = pos_loss + torch.clamp(neg_margin - hard_neg_dist_row, min=0)
loss_col = pos_loss + torch.clamp(neg_margin - hard_neg_dist_col, min=0)
else:
raise NotImplementedError()
elif loss_type == 'CIRCLE':
log_scale = 512
m = 0.1
neg_mask_row = torch.unsqueeze(torch.eye(num_corr, device=feat_anc.device), 0)
if radius_mask_row is not None:
neg_mask_row += radius_mask_row
neg_mask_col = torch.unsqueeze(torch.eye(num_corr, device=feat_anc.device), 0)
if radius_mask_col is not None:
neg_mask_col += radius_mask_col
pos_margin = 1 - m
neg_margin = m
pos_optimal = 1 + m
neg_optimal = -m
neg_mat_row = dist_mat - 128 * neg_mask_row
neg_mat_col = dist_mat - 128 * neg_mask_col
lse_positive = torch.logsumexp(-log_scale * (pos_vec[..., None] - pos_margin) * \
torch.clamp(pos_optimal - pos_vec[..., None], min=0).detach(), dim=-1)
lse_negative_row = torch.logsumexp(log_scale * (neg_mat_row - neg_margin) * \
torch.clamp(neg_mat_row - neg_optimal, min=0).detach(), dim=-1)
lse_negative_col = torch.logsumexp(log_scale * (neg_mat_col - neg_margin) * \
torch.clamp(neg_mat_col - neg_optimal, min=0).detach(), dim=-2)
loss_row = F.softplus(lse_positive + lse_negative_row) / log_scale
loss_col = F.softplus(lse_positive + lse_negative_col) / log_scale
else:
raise NotImplementedError()
if dist_type == 'cosine_dist':
err_row = dist_mat - torch.unsqueeze(pos_vec, -1)
err_col = dist_mat - torch.unsqueeze(pos_vec, -2)
elif dist_type == 'euclidean_dist' or dist_type == 'euclidean_dist_no_norm':
err_row = torch.unsqueeze(pos_vec, -1) - dist_mat
err_col = torch.unsqueeze(pos_vec, -2) - dist_mat
else:
raise NotImplementedError()
if radius_mask_row is not None:
err_row = err_row - 10 * radius_mask_row
if radius_mask_col is not None:
err_col = err_col - 10 * radius_mask_col
err_row = torch.sum(torch.clamp(err_row, min=0), dim=-1)
err_col = torch.sum(torch.clamp(err_col, min=0), dim=-2)
loss = 0
accuracy = 0
tot_loss = (loss_row + loss_col) / 2
if corr_weight is not None:
tot_loss = tot_loss * corr_weight
for i in range(batch_size):
if corr_weight is not None:
loss += torch.sum(tot_loss[i][inlier_mask[i]]) / \
(torch.sum(corr_weight[i][inlier_mask[i]]) + 1e-6)
else:
loss += torch.mean(tot_loss[i][inlier_mask[i]])
cnt_err_row = torch.count_nonzero(err_row[i][inlier_mask[i]]).float()
cnt_err_col = torch.count_nonzero(err_col[i][inlier_mask[i]]).float()
tot_err = cnt_err_row + cnt_err_col
if inlier_num[i] != 0:
accuracy += 1. - tot_err / inlier_num[i] / batch_size / 2.
else:
accuracy += 1.
matched_mask = torch.logical_and(torch.eq(err_row, 0), torch.eq(err_col, 0))
matched_mask = torch.logical_and(matched_mask, inlier_mask)
loss /= batch_size
accuracy /= batch_size
return loss, accuracy, matched_mask
# for the neighborhood areas of keypoints extracted from normal image, the score from noise_score_map should be close
# for the rest, the noise image's score should less than normal image
# input: score_map [batch_size, H, W, 1]; indices [2, k, 2]
# output: loss [scalar]
def make_noise_score_map_loss(score_map, noise_score_map, indices, batch_size, thld=0.):
H, W = score_map.shape[1:3]
loss = 0
for i in range(batch_size):
kpts_coords = indices[i].T # (2, num_kpts)
mask = torch.zeros([H, W], device=score_map.device)
mask[kpts_coords.cpu().numpy()] = 1
# using 3x3 kernel to put kpts' neightborhood area into the mask
kernel = torch.ones([1, 1, 3, 3], device=score_map.device)
mask = F.conv2d(mask.unsqueeze(0).unsqueeze(0), kernel, padding=1)[0, 0] > 0
loss1 = torch.sum(torch.abs(score_map[i] - noise_score_map[i]).squeeze() * mask) / torch.sum(mask)
loss2 = torch.sum(torch.clamp(noise_score_map[i] - score_map[i] - thld, min=0).squeeze() * torch.logical_not(mask)) / (H * W - torch.sum(mask))
loss += loss1
loss += loss2
if i == 0:
first_mask = mask
return loss, first_mask
def make_noise_score_map_loss_labelmap(score_map, noise_score_map, labelmap, batch_size, thld=0.):
H, W = score_map.shape[1:3]
loss = 0
for i in range(batch_size):
# using 3x3 kernel to put kpts' neightborhood area into the mask
kernel = torch.ones([1, 1, 3, 3], device=score_map.device)
mask = F.conv2d(labelmap[i].unsqueeze(0).to(score_map.device).float(), kernel, padding=1)[0, 0] > 0
loss1 = torch.sum(torch.abs(score_map[i] - noise_score_map[i]).squeeze() * mask) / torch.sum(mask)
loss2 = torch.sum(torch.clamp(noise_score_map[i] - score_map[i] - thld, min=0).squeeze() * torch.logical_not(mask)) / (H * W - torch.sum(mask))
loss += loss1
loss += loss2
if i == 0:
first_mask = mask
return loss, first_mask
def make_score_map_peakiness_loss(score_map, scores, batch_size):
H, W = score_map.shape[1:3]
loss = 0
for i in range(batch_size):
loss += torch.mean(scores[i]) - torch.mean(score_map[i])
loss /= batch_size
return 1 - loss
|