File size: 5,252 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import cv2
import numpy as np
import os
import math
import subprocess
from tqdm import tqdm


def compute_essential(matched_kp1, matched_kp2, K):
    pts1 = cv2.undistortPoints(matched_kp1,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0))
    pts2 = cv2.undistortPoints(matched_kp2,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0))
    K_1 = np.eye(3)
    # Estimate the homography between the matches using RANSAC
    ransac_model, ransac_inliers = cv2.findEssentialMat(pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000)
    if ransac_inliers is None or ransac_model.shape != (3,3):
        ransac_inliers = np.array([])
        ransac_model = None
    return ransac_model, ransac_inliers, pts1, pts2


def compute_error(R_GT,t_GT,E,pts1_norm, pts2_norm, inliers):
    """Compute the angular error between two rotation matrices and two translation vectors.
    Keyword arguments:
    R -- 2D numpy array containing an estimated rotation
    gt_R -- 2D numpy array containing the corresponding ground truth rotation
    t -- 2D numpy array containing an estimated translation as column
    gt_t -- 2D numpy array containing the corresponding ground truth translation
    """

    inliers = inliers.ravel()
    R = np.eye(3)
    t = np.zeros((3,1))
    sst = True
    try:
        _, R, t, _ = cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), inliers)
    except:
        sst = False
    # calculate angle between provided rotations
    # 
    if sst:
        dR = np.matmul(R, np.transpose(R_GT))
        dR = cv2.Rodrigues(dR)[0]
        dR = np.linalg.norm(dR) * 180 / math.pi

        # calculate angle between provided translations
        dT = float(np.dot(t_GT.T, t))
        dT /= float(np.linalg.norm(t_GT))

        if dT > 1 or dT < -1:
            print("Domain warning! dT:",dT)
            dT = max(-1,min(1,dT))
        dT = math.acos(dT) * 180 / math.pi
        dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation
    else:
        dR, dT = 180.0, 180.0
    return dR, dT


def pose_evaluation(result_base_dir, dark_name1, dark_name2, enhancer, K, R_GT, t_GT):
    try:
        m_kp1 = np.load(result_base_dir+enhancer+'/DarkFeat/POINT_1/'+dark_name1)
        m_kp2 = np.load(result_base_dir+enhancer+'/DarkFeat/POINT_2/'+dark_name2)
    except:
        return 180.0, 180.0
    try:
        E, inliers, pts1, pts2 = compute_essential(m_kp1, m_kp2, K)
    except:
        E, inliers, pts1, pts2 = np.zeros((3, 3)), np.array([]), None, None
    dR, dT = compute_error(R_GT, t_GT, E, pts1, pts2, inliers)
    return dR, dT


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--histeq', action='store_true')
    parser.add_argument('--dataset_dir', type=str, default='/data/hyz/MID/')
    opt = parser.parse_args()
    
    sizer = (960, 640)
    focallength_x = 4.504986436499113e+03/(6744/sizer[0])
    focallength_y = 4.513311442889859e+03/(4502/sizer[1])
    K = np.eye(3)
    K[0,0] = focallength_x
    K[1,1] = focallength_y
    K[0,2] = 3.363322177533149e+03/(6744/sizer[0])
    K[1,2] = 2.291824660547715e+03/(4502/sizer[1])
    Kinv = np.linalg.inv(K)
    Kinvt = np.transpose(Kinv)

    PE_MT = np.zeros((6, 8))

    enhancer = 'None' if not opt.histeq else 'HistEQ'

    for scene in ['Indoor', 'Outdoor']:
        dir_base = opt.dataset_dir + '/' + scene + '/'
        base_save = 'result_errors/' + scene + '/'
        pair_list = sorted(os.listdir(dir_base))

        os.makedirs(base_save, exist_ok=True)

        for pair in tqdm(pair_list):
            opention = 1
            if scene == 'Outdoor':
                pass
            else:
                if int(pair[4::]) <= 17:
                    opention = 0
                else:
                    pass
            name = []
            files = sorted(os.listdir(dir_base+pair))
            for file_ in files:
                if file_.endswith('.cr2'):
                    name.append(file_[0:9])
            ISO = ['00100', '00200', '00400', '00800', '01600', '03200', '06400', '12800']
            if opention == 1:
                Shutter_speed = ['0.005','0.01','0.025','0.05','0.17','0.5']
            else:
                Shutter_speed = ['0.01','0.02','0.05','0.1','0.3','1']

            E_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'E_estimated.npy')
            F_GT = np.dot(np.dot(Kinvt,E_GT),Kinv)
            R_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'R_GT.npy')
            t_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'T_GT.npy')
            result_base_dir ='result/' +scene+'/'+pair+'/'
            for iso in ISO:
                for ex in Shutter_speed:
                    dark_name1 = name[0]+iso+'_'+ex+'_'+scene+'.npy'
                    dark_name2 = name[1]+iso+'_'+ex+'_'+scene+'.npy'

                    dr, dt = pose_evaluation(result_base_dir,dark_name1,dark_name2,enhancer,K,R_GT,t_GT) 
                    PE_MT[Shutter_speed.index(ex),ISO.index(iso)] = max(dr, dt)

                    subprocess.check_output(['mkdir', '-p', base_save + pair + f'/{enhancer}/'])
                    np.save(base_save + pair + f'/{enhancer}/Pose_error_DarkFeat.npy', PE_MT)