File size: 11,949 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import cv2
import time
import yaml
import torch
import datetime
from tensorboardX import SummaryWriter
import torchvision.transforms as tvf
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from nets.l2net import Quad_L2Net
from nets.geom import getK, getWarp, _grid_positions
from nets.loss import make_detector_loss
from nets.score import extract_kpts
from datasets.noise_simulator import NoiseSimulator
from nets.l2net import Quad_L2Net


class SingleTrainerNoRel:
    def __init__(self, config, device, loader, job_name, start_cnt):
        self.config = config
        self.device = device
        self.loader = loader
        
        # tensorboard writer construction
        os.makedirs('./runs/', exist_ok=True)
        if job_name != '':
            self.log_dir = f'runs/{job_name}'
        else:
            self.log_dir = f'runs/{datetime.datetime.now().strftime("%m-%d-%H%M%S")}'

        self.writer = SummaryWriter(self.log_dir)
        with open(f'{self.log_dir}/config.yaml', 'w') as f:
            yaml.dump(config, f)

        if config['network']['input_type'] == 'gray' or config['network']['input_type'] == 'raw-gray':
            self.model = eval(f'{config["network"]["model"]}(inchan=1)').to(device)
        elif config['network']['input_type'] == 'rgb' or config['network']['input_type'] == 'raw-demosaic':
            self.model = eval(f'{config["network"]["model"]}(inchan=3)').to(device)
        elif config['network']['input_type'] == 'raw':
            self.model = eval(f'{config["network"]["model"]}(inchan=4)').to(device)
        else:
            raise NotImplementedError()

        # noise maker
        self.noise_maker = NoiseSimulator(device)

        # load model
        self.cnt = 0
        if start_cnt != 0:
            self.model.load_state_dict(torch.load(f'{self.log_dir}/model_{start_cnt:06d}.pth'))
            self.cnt = start_cnt + 1

        # optimizer and scheduler
        if self.config['training']['optimizer'] == 'SGD':
            self.optimizer = torch.optim.SGD(
                [{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}],
                lr=self.config['training']['lr'],
                momentum=self.config['training']['momentum'],
                weight_decay=self.config['training']['weight_decay'],
            )
        elif self.config['training']['optimizer'] == 'Adam':
            self.optimizer = torch.optim.Adam(
                [{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}],
                lr=self.config['training']['lr'],
                weight_decay=self.config['training']['weight_decay']
            )
        else:
            raise NotImplementedError()

        self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
            self.optimizer,
            step_size=self.config['training']['lr_step'],
            gamma=self.config['training']['lr_gamma'],
            last_epoch=start_cnt
        )
        for param_tensor in self.model.state_dict():
            print(param_tensor, "\t", self.model.state_dict()[param_tensor].size())


    def save(self, iter_num):
        torch.save(self.model.state_dict(), f'{self.log_dir}/model_{iter_num:06d}.pth')

    def load(self, path):
        self.model.load_state_dict(torch.load(path))

    def train(self):
        self.model.train()
        
        for epoch in range(2):
            for batch_idx, inputs in enumerate(self.loader):
                self.optimizer.zero_grad()
                t = time.time()

                # preprocess and add noise
                img0_ori, noise_img0_ori = self.preprocess_noise_pair(inputs['img0'], self.cnt)
                img1_ori, noise_img1_ori = self.preprocess_noise_pair(inputs['img1'], self.cnt)

                img0 = img0_ori.permute(0, 3, 1, 2).float().to(self.device)
                img1 = img1_ori.permute(0, 3, 1, 2).float().to(self.device)

                if self.config['network']['input_type'] == 'rgb':
                    # 3-channel rgb
                    RGB_mean = [0.485, 0.456, 0.406]
                    RGB_std  = [0.229, 0.224, 0.225]
                    norm_RGB = tvf.Normalize(mean=RGB_mean, std=RGB_std)
                    img0 = norm_RGB(img0)
                    img1 = norm_RGB(img1)
                    noise_img0 = norm_RGB(noise_img0)
                    noise_img1 = norm_RGB(noise_img1)

                elif self.config['network']['input_type'] == 'gray':
                    # 1-channel
                    img0 = torch.mean(img0, dim=1, keepdim=True)
                    img1 = torch.mean(img1, dim=1, keepdim=True)
                    noise_img0 = torch.mean(noise_img0, dim=1, keepdim=True)
                    noise_img1 = torch.mean(noise_img1, dim=1, keepdim=True)
                    norm_gray0 = tvf.Normalize(mean=img0.mean(), std=img0.std())
                    norm_gray1 = tvf.Normalize(mean=img1.mean(), std=img1.std())
                    img0 = norm_gray0(img0)
                    img1 = norm_gray1(img1)
                    noise_img0 = norm_gray0(noise_img0)
                    noise_img1 = norm_gray1(noise_img1)

                elif self.config['network']['input_type'] == 'raw':
                    # 4-channel
                    pass

                elif self.config['network']['input_type'] == 'raw-demosaic':
                    # 3-channel
                    pass

                else:
                    raise NotImplementedError()

                desc0, score_map0, _, _ = self.model(img0)
                desc1, score_map1, _, _ = self.model(img1)

                cur_feat_size0 = torch.tensor(score_map0.shape[2:])
                cur_feat_size1 = torch.tensor(score_map1.shape[2:])

                desc0 = desc0.permute(0, 2, 3, 1)
                desc1 = desc1.permute(0, 2, 3, 1)
                score_map0 = score_map0.permute(0, 2, 3, 1)
                score_map1 = score_map1.permute(0, 2, 3, 1)

                r_K0 = getK(inputs['ori_img_size0'], cur_feat_size0, inputs['K0']).to(self.device)
                r_K1 = getK(inputs['ori_img_size1'], cur_feat_size1, inputs['K1']).to(self.device)
                
                pos0 = _grid_positions(
                    cur_feat_size0[0], cur_feat_size0[1], img0.shape[0]).to(self.device)

                pos0, pos1, _ = getWarp(
                    pos0, inputs['rel_pose'].to(self.device), inputs['depth0'].to(self.device),
                    r_K0, inputs['depth1'].to(self.device), r_K1, img0.shape[0])

                det_structured_loss, det_accuracy = make_detector_loss(
                    pos0, pos1, desc0, desc1,
                    score_map0, score_map1, img0.shape[0],
                    self.config['network']['use_corr_n'],
                    self.config['network']['loss_type'],
                    self.config
                )

                total_loss = det_structured_loss
                
                self.writer.add_scalar("acc/normal_acc", det_accuracy, self.cnt)
                self.writer.add_scalar("loss/total_loss", total_loss, self.cnt)
                self.writer.add_scalar("loss/det_loss_normal", det_structured_loss, self.cnt)
                print('iter={},\tloss={:.4f},\tacc={:.4f},\t{:.4f}s/iter'.format(self.cnt, total_loss, det_accuracy, time.time()-t))

                if det_structured_loss != 0:
                    total_loss.backward()
                    self.optimizer.step()
                self.lr_scheduler.step()

                if self.cnt % 100 == 0:
                    indices0, scores0 = extract_kpts(
                        score_map0.permute(0, 3, 1, 2),
                        k=self.config['network']['det']['kpt_n'],
                        score_thld=self.config['network']['det']['score_thld'],
                        nms_size=self.config['network']['det']['nms_size'],
                        eof_size=self.config['network']['det']['eof_size'],
                        edge_thld=self.config['network']['det']['edge_thld']
                    )
                    indices1, scores1 = extract_kpts(
                        score_map1.permute(0, 3, 1, 2),
                        k=self.config['network']['det']['kpt_n'],
                        score_thld=self.config['network']['det']['score_thld'],
                        nms_size=self.config['network']['det']['nms_size'],
                        eof_size=self.config['network']['det']['eof_size'],
                        edge_thld=self.config['network']['det']['edge_thld']
                    )

                    if self.config['network']['input_type'] == 'raw':
                        kpt_img0 = self.showKeyPoints(img0_ori[0][..., :3] * 255., indices0[0])
                        kpt_img1 = self.showKeyPoints(img1_ori[0][..., :3] * 255., indices1[0])
                    else:
                        kpt_img0 = self.showKeyPoints(img0_ori[0] * 255., indices0[0])
                        kpt_img1 = self.showKeyPoints(img1_ori[0] * 255., indices1[0])

                    self.writer.add_image('img0/kpts', kpt_img0, self.cnt, dataformats='HWC')
                    self.writer.add_image('img1/kpts', kpt_img1, self.cnt, dataformats='HWC')
                    self.writer.add_image('img0/score_map', score_map0[0], self.cnt, dataformats='HWC')
                    self.writer.add_image('img1/score_map', score_map1[0], self.cnt, dataformats='HWC')

                if self.cnt % 10000 == 0:
                    self.save(self.cnt)
                
                self.cnt += 1


    def showKeyPoints(self, img, indices):
        key_points = cv2.KeyPoint_convert(indices.cpu().float().numpy()[:, ::-1])
        img = img.numpy().astype('uint8')
        img = cv2.drawKeypoints(img, key_points, None, color=(0, 255, 0))
        return img


    def preprocess(self, img, iter_idx):
        if not self.config['network']['noise'] and 'raw' not in self.config['network']['input_type']:
            return img

        raw = self.noise_maker.rgb2raw(img, batched=True)

        if self.config['network']['noise']:
            ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep']
            raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True)

        if self.config['network']['input_type'] == 'raw':
            return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True))

        if self.config['network']['input_type'] == 'raw-demosaic':
            return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True))

        rgb = self.noise_maker.raw2rgb(raw, batched=True)
        if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray':
            return torch.tensor(rgb)

        raise NotImplementedError()


    def preprocess_noise_pair(self, img, iter_idx):
        assert self.config['network']['noise']

        raw = self.noise_maker.rgb2raw(img, batched=True)

        ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep']
        noise_raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True)

        if self.config['network']['input_type'] == 'raw':
            return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True)), \
                   torch.tensor(self.noise_maker.raw2packedRaw(noise_raw, batched=True))

        if self.config['network']['input_type'] == 'raw-demosaic':
            return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True)), \
                   torch.tensor(self.noise_maker.raw2demosaicRaw(noise_raw, batched=True))

        noise_rgb = self.noise_maker.raw2rgb(noise_raw, batched=True)
        if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray':
            return img, torch.tensor(noise_rgb)

        raise NotImplementedError()