File size: 11,949 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
import cv2
import time
import yaml
import torch
import datetime
from tensorboardX import SummaryWriter
import torchvision.transforms as tvf
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from nets.l2net import Quad_L2Net
from nets.geom import getK, getWarp, _grid_positions
from nets.loss import make_detector_loss
from nets.score import extract_kpts
from datasets.noise_simulator import NoiseSimulator
from nets.l2net import Quad_L2Net
class SingleTrainerNoRel:
def __init__(self, config, device, loader, job_name, start_cnt):
self.config = config
self.device = device
self.loader = loader
# tensorboard writer construction
os.makedirs('./runs/', exist_ok=True)
if job_name != '':
self.log_dir = f'runs/{job_name}'
else:
self.log_dir = f'runs/{datetime.datetime.now().strftime("%m-%d-%H%M%S")}'
self.writer = SummaryWriter(self.log_dir)
with open(f'{self.log_dir}/config.yaml', 'w') as f:
yaml.dump(config, f)
if config['network']['input_type'] == 'gray' or config['network']['input_type'] == 'raw-gray':
self.model = eval(f'{config["network"]["model"]}(inchan=1)').to(device)
elif config['network']['input_type'] == 'rgb' or config['network']['input_type'] == 'raw-demosaic':
self.model = eval(f'{config["network"]["model"]}(inchan=3)').to(device)
elif config['network']['input_type'] == 'raw':
self.model = eval(f'{config["network"]["model"]}(inchan=4)').to(device)
else:
raise NotImplementedError()
# noise maker
self.noise_maker = NoiseSimulator(device)
# load model
self.cnt = 0
if start_cnt != 0:
self.model.load_state_dict(torch.load(f'{self.log_dir}/model_{start_cnt:06d}.pth'))
self.cnt = start_cnt + 1
# optimizer and scheduler
if self.config['training']['optimizer'] == 'SGD':
self.optimizer = torch.optim.SGD(
[{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}],
lr=self.config['training']['lr'],
momentum=self.config['training']['momentum'],
weight_decay=self.config['training']['weight_decay'],
)
elif self.config['training']['optimizer'] == 'Adam':
self.optimizer = torch.optim.Adam(
[{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}],
lr=self.config['training']['lr'],
weight_decay=self.config['training']['weight_decay']
)
else:
raise NotImplementedError()
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
self.optimizer,
step_size=self.config['training']['lr_step'],
gamma=self.config['training']['lr_gamma'],
last_epoch=start_cnt
)
for param_tensor in self.model.state_dict():
print(param_tensor, "\t", self.model.state_dict()[param_tensor].size())
def save(self, iter_num):
torch.save(self.model.state_dict(), f'{self.log_dir}/model_{iter_num:06d}.pth')
def load(self, path):
self.model.load_state_dict(torch.load(path))
def train(self):
self.model.train()
for epoch in range(2):
for batch_idx, inputs in enumerate(self.loader):
self.optimizer.zero_grad()
t = time.time()
# preprocess and add noise
img0_ori, noise_img0_ori = self.preprocess_noise_pair(inputs['img0'], self.cnt)
img1_ori, noise_img1_ori = self.preprocess_noise_pair(inputs['img1'], self.cnt)
img0 = img0_ori.permute(0, 3, 1, 2).float().to(self.device)
img1 = img1_ori.permute(0, 3, 1, 2).float().to(self.device)
if self.config['network']['input_type'] == 'rgb':
# 3-channel rgb
RGB_mean = [0.485, 0.456, 0.406]
RGB_std = [0.229, 0.224, 0.225]
norm_RGB = tvf.Normalize(mean=RGB_mean, std=RGB_std)
img0 = norm_RGB(img0)
img1 = norm_RGB(img1)
noise_img0 = norm_RGB(noise_img0)
noise_img1 = norm_RGB(noise_img1)
elif self.config['network']['input_type'] == 'gray':
# 1-channel
img0 = torch.mean(img0, dim=1, keepdim=True)
img1 = torch.mean(img1, dim=1, keepdim=True)
noise_img0 = torch.mean(noise_img0, dim=1, keepdim=True)
noise_img1 = torch.mean(noise_img1, dim=1, keepdim=True)
norm_gray0 = tvf.Normalize(mean=img0.mean(), std=img0.std())
norm_gray1 = tvf.Normalize(mean=img1.mean(), std=img1.std())
img0 = norm_gray0(img0)
img1 = norm_gray1(img1)
noise_img0 = norm_gray0(noise_img0)
noise_img1 = norm_gray1(noise_img1)
elif self.config['network']['input_type'] == 'raw':
# 4-channel
pass
elif self.config['network']['input_type'] == 'raw-demosaic':
# 3-channel
pass
else:
raise NotImplementedError()
desc0, score_map0, _, _ = self.model(img0)
desc1, score_map1, _, _ = self.model(img1)
cur_feat_size0 = torch.tensor(score_map0.shape[2:])
cur_feat_size1 = torch.tensor(score_map1.shape[2:])
desc0 = desc0.permute(0, 2, 3, 1)
desc1 = desc1.permute(0, 2, 3, 1)
score_map0 = score_map0.permute(0, 2, 3, 1)
score_map1 = score_map1.permute(0, 2, 3, 1)
r_K0 = getK(inputs['ori_img_size0'], cur_feat_size0, inputs['K0']).to(self.device)
r_K1 = getK(inputs['ori_img_size1'], cur_feat_size1, inputs['K1']).to(self.device)
pos0 = _grid_positions(
cur_feat_size0[0], cur_feat_size0[1], img0.shape[0]).to(self.device)
pos0, pos1, _ = getWarp(
pos0, inputs['rel_pose'].to(self.device), inputs['depth0'].to(self.device),
r_K0, inputs['depth1'].to(self.device), r_K1, img0.shape[0])
det_structured_loss, det_accuracy = make_detector_loss(
pos0, pos1, desc0, desc1,
score_map0, score_map1, img0.shape[0],
self.config['network']['use_corr_n'],
self.config['network']['loss_type'],
self.config
)
total_loss = det_structured_loss
self.writer.add_scalar("acc/normal_acc", det_accuracy, self.cnt)
self.writer.add_scalar("loss/total_loss", total_loss, self.cnt)
self.writer.add_scalar("loss/det_loss_normal", det_structured_loss, self.cnt)
print('iter={},\tloss={:.4f},\tacc={:.4f},\t{:.4f}s/iter'.format(self.cnt, total_loss, det_accuracy, time.time()-t))
if det_structured_loss != 0:
total_loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
if self.cnt % 100 == 0:
indices0, scores0 = extract_kpts(
score_map0.permute(0, 3, 1, 2),
k=self.config['network']['det']['kpt_n'],
score_thld=self.config['network']['det']['score_thld'],
nms_size=self.config['network']['det']['nms_size'],
eof_size=self.config['network']['det']['eof_size'],
edge_thld=self.config['network']['det']['edge_thld']
)
indices1, scores1 = extract_kpts(
score_map1.permute(0, 3, 1, 2),
k=self.config['network']['det']['kpt_n'],
score_thld=self.config['network']['det']['score_thld'],
nms_size=self.config['network']['det']['nms_size'],
eof_size=self.config['network']['det']['eof_size'],
edge_thld=self.config['network']['det']['edge_thld']
)
if self.config['network']['input_type'] == 'raw':
kpt_img0 = self.showKeyPoints(img0_ori[0][..., :3] * 255., indices0[0])
kpt_img1 = self.showKeyPoints(img1_ori[0][..., :3] * 255., indices1[0])
else:
kpt_img0 = self.showKeyPoints(img0_ori[0] * 255., indices0[0])
kpt_img1 = self.showKeyPoints(img1_ori[0] * 255., indices1[0])
self.writer.add_image('img0/kpts', kpt_img0, self.cnt, dataformats='HWC')
self.writer.add_image('img1/kpts', kpt_img1, self.cnt, dataformats='HWC')
self.writer.add_image('img0/score_map', score_map0[0], self.cnt, dataformats='HWC')
self.writer.add_image('img1/score_map', score_map1[0], self.cnt, dataformats='HWC')
if self.cnt % 10000 == 0:
self.save(self.cnt)
self.cnt += 1
def showKeyPoints(self, img, indices):
key_points = cv2.KeyPoint_convert(indices.cpu().float().numpy()[:, ::-1])
img = img.numpy().astype('uint8')
img = cv2.drawKeypoints(img, key_points, None, color=(0, 255, 0))
return img
def preprocess(self, img, iter_idx):
if not self.config['network']['noise'] and 'raw' not in self.config['network']['input_type']:
return img
raw = self.noise_maker.rgb2raw(img, batched=True)
if self.config['network']['noise']:
ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep']
raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True)
if self.config['network']['input_type'] == 'raw':
return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True))
if self.config['network']['input_type'] == 'raw-demosaic':
return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True))
rgb = self.noise_maker.raw2rgb(raw, batched=True)
if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray':
return torch.tensor(rgb)
raise NotImplementedError()
def preprocess_noise_pair(self, img, iter_idx):
assert self.config['network']['noise']
raw = self.noise_maker.rgb2raw(img, batched=True)
ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep']
noise_raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True)
if self.config['network']['input_type'] == 'raw':
return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True)), \
torch.tensor(self.noise_maker.raw2packedRaw(noise_raw, batched=True))
if self.config['network']['input_type'] == 'raw-demosaic':
return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True)), \
torch.tensor(self.noise_maker.raw2demosaicRaw(noise_raw, batched=True))
noise_rgb = self.noise_maker.raw2rgb(noise_raw, batched=True)
if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray':
return img, torch.tensor(noise_rgb)
raise NotImplementedError()
|