File size: 5,461 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from pathlib import Path
import time
from collections import OrderedDict
import numpy as np
import cv2
import rawpy
import torch
import colour_demosaicing


class AverageTimer:
    """ Class to help manage printing simple timing of code execution. """

    def __init__(self, smoothing=0.3, newline=False):
        self.smoothing = smoothing
        self.newline = newline
        self.times = OrderedDict()
        self.will_print = OrderedDict()
        self.reset()

    def reset(self):
        now = time.time()
        self.start = now
        self.last_time = now
        for name in self.will_print:
            self.will_print[name] = False

    def update(self, name='default'):
        now = time.time()
        dt = now - self.last_time
        if name in self.times:
            dt = self.smoothing * dt + (1 - self.smoothing) * self.times[name]
        self.times[name] = dt
        self.will_print[name] = True
        self.last_time = now

    def print(self, text='Timer'):
        total = 0.
        print('[{}]'.format(text), end=' ')
        for key in self.times:
            val = self.times[key]
            if self.will_print[key]:
                print('%s=%.3f' % (key, val), end=' ')
                total += val
        print('total=%.3f sec {%.1f FPS}' % (total, 1./total), end=' ')
        if self.newline:
            print(flush=True)
        else:
            print(end='\r', flush=True)
        self.reset()


class VideoStreamer:
    def __init__(self, basedir, resize, image_glob):
        self.listing = []
        self.resize = resize
        self.i = 0
        if Path(basedir).is_dir():
            print('==> Processing image directory input: {}'.format(basedir))
            self.listing = list(Path(basedir).glob(image_glob[0]))
            for j in range(1, len(image_glob)):
                image_path = list(Path(basedir).glob(image_glob[j]))
                self.listing = self.listing + image_path
            self.listing.sort()
            if len(self.listing) == 0:
                raise IOError('No images found (maybe bad \'image_glob\' ?)')
            self.max_length = len(self.listing)
        else:
            raise ValueError('VideoStreamer input \"{}\" not recognized.'.format(basedir))

    def load_image(self, impath):
        raw = rawpy.imread(str(impath)).raw_image_visible
        raw = np.clip(raw.astype('float32') - 512, 0, 65535)
        img = colour_demosaicing.demosaicing_CFA_Bayer_bilinear(raw, 'RGGB').astype('float32')
        img = np.clip(img, 0, 16383)

        m = img.mean()
        d = np.abs(img - img.mean()).mean()
        img = (img - m + 2*d) / 4/d * 255
        image = np.clip(img, 0, 255)

        w_new, h_new = self.resize[0], self.resize[1]

        im = cv2.resize(image.astype('float32'), (w_new, h_new), interpolation=cv2.INTER_AREA)
        return im

    def next_frame(self):
        if self.i == self.max_length:
            return (None, False)
        image_file = str(self.listing[self.i])
        image = self.load_image(image_file)
        self.i = self.i + 1
        return (image, True)


def frame2tensor(frame, device):
    if len(frame.shape) == 2:
        return torch.from_numpy(frame/255.).float()[None, None].to(device)
    else:
        return torch.from_numpy(frame/255.).float().permute(2, 0, 1)[None].to(device)


def make_matching_plot_fast(image0, image1, mkpts0, mkpts1,
                            color, text, path=None, margin=10,
                            opencv_display=False, opencv_title='',
                            small_text=[]):
    H0, W0 = image0.shape[:2]
    H1, W1 = image1.shape[:2]
    H, W = max(H0, H1), W0 + W1 + margin

    out = 255*np.ones((H, W, 3), np.uint8)
    out[:H0, :W0, :] = image0
    out[:H1, W0+margin:, :] = image1

    # Scale factor for consistent visualization across scales.
    sc = min(H / 640., 2.0)

    # Big text.
    Ht = int(30 * sc)  # text height
    txt_color_fg = (255, 255, 255)
    txt_color_bg = (0, 0, 0)
    
    for i, t in enumerate(text):
        cv2.putText(out, t, (int(8*sc), Ht*(i+1)), cv2.FONT_HERSHEY_DUPLEX,
                    1.0*sc, txt_color_bg, 2, cv2.LINE_AA)
        cv2.putText(out, t, (int(8*sc), Ht*(i+1)), cv2.FONT_HERSHEY_DUPLEX,
                    1.0*sc, txt_color_fg, 1, cv2.LINE_AA)

    out_backup = out.copy()

    mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
    color = (np.array(color[:, :3])*255).astype(int)[:, ::-1]
    for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, color):
        c = c.tolist()
        cv2.line(out, (x0, y0), (x1 + margin + W0, y1),
                 color=c, thickness=1, lineType=cv2.LINE_AA)
        # display line end-points as circles
        cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1,
                   lineType=cv2.LINE_AA)

    # Small text.
    Ht = int(18 * sc)  # text height
    for i, t in enumerate(reversed(small_text)):
        cv2.putText(out, t, (int(8*sc), int(H-Ht*(i+.6))), cv2.FONT_HERSHEY_DUPLEX,
                    0.5*sc, txt_color_bg, 2, cv2.LINE_AA)
        cv2.putText(out, t, (int(8*sc), int(H-Ht*(i+.6))), cv2.FONT_HERSHEY_DUPLEX,
                    0.5*sc, txt_color_fg, 1, cv2.LINE_AA)

    if path is not None:
        cv2.imwrite(str(path), out)

    if opencv_display:
        cv2.imshow(opencv_title, out)
        cv2.waitKey(1)
        
    return out / 2 + out_backup / 2