File size: 5,461 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
from pathlib import Path
import time
from collections import OrderedDict
import numpy as np
import cv2
import rawpy
import torch
import colour_demosaicing
class AverageTimer:
""" Class to help manage printing simple timing of code execution. """
def __init__(self, smoothing=0.3, newline=False):
self.smoothing = smoothing
self.newline = newline
self.times = OrderedDict()
self.will_print = OrderedDict()
self.reset()
def reset(self):
now = time.time()
self.start = now
self.last_time = now
for name in self.will_print:
self.will_print[name] = False
def update(self, name='default'):
now = time.time()
dt = now - self.last_time
if name in self.times:
dt = self.smoothing * dt + (1 - self.smoothing) * self.times[name]
self.times[name] = dt
self.will_print[name] = True
self.last_time = now
def print(self, text='Timer'):
total = 0.
print('[{}]'.format(text), end=' ')
for key in self.times:
val = self.times[key]
if self.will_print[key]:
print('%s=%.3f' % (key, val), end=' ')
total += val
print('total=%.3f sec {%.1f FPS}' % (total, 1./total), end=' ')
if self.newline:
print(flush=True)
else:
print(end='\r', flush=True)
self.reset()
class VideoStreamer:
def __init__(self, basedir, resize, image_glob):
self.listing = []
self.resize = resize
self.i = 0
if Path(basedir).is_dir():
print('==> Processing image directory input: {}'.format(basedir))
self.listing = list(Path(basedir).glob(image_glob[0]))
for j in range(1, len(image_glob)):
image_path = list(Path(basedir).glob(image_glob[j]))
self.listing = self.listing + image_path
self.listing.sort()
if len(self.listing) == 0:
raise IOError('No images found (maybe bad \'image_glob\' ?)')
self.max_length = len(self.listing)
else:
raise ValueError('VideoStreamer input \"{}\" not recognized.'.format(basedir))
def load_image(self, impath):
raw = rawpy.imread(str(impath)).raw_image_visible
raw = np.clip(raw.astype('float32') - 512, 0, 65535)
img = colour_demosaicing.demosaicing_CFA_Bayer_bilinear(raw, 'RGGB').astype('float32')
img = np.clip(img, 0, 16383)
m = img.mean()
d = np.abs(img - img.mean()).mean()
img = (img - m + 2*d) / 4/d * 255
image = np.clip(img, 0, 255)
w_new, h_new = self.resize[0], self.resize[1]
im = cv2.resize(image.astype('float32'), (w_new, h_new), interpolation=cv2.INTER_AREA)
return im
def next_frame(self):
if self.i == self.max_length:
return (None, False)
image_file = str(self.listing[self.i])
image = self.load_image(image_file)
self.i = self.i + 1
return (image, True)
def frame2tensor(frame, device):
if len(frame.shape) == 2:
return torch.from_numpy(frame/255.).float()[None, None].to(device)
else:
return torch.from_numpy(frame/255.).float().permute(2, 0, 1)[None].to(device)
def make_matching_plot_fast(image0, image1, mkpts0, mkpts1,
color, text, path=None, margin=10,
opencv_display=False, opencv_title='',
small_text=[]):
H0, W0 = image0.shape[:2]
H1, W1 = image1.shape[:2]
H, W = max(H0, H1), W0 + W1 + margin
out = 255*np.ones((H, W, 3), np.uint8)
out[:H0, :W0, :] = image0
out[:H1, W0+margin:, :] = image1
# Scale factor for consistent visualization across scales.
sc = min(H / 640., 2.0)
# Big text.
Ht = int(30 * sc) # text height
txt_color_fg = (255, 255, 255)
txt_color_bg = (0, 0, 0)
for i, t in enumerate(text):
cv2.putText(out, t, (int(8*sc), Ht*(i+1)), cv2.FONT_HERSHEY_DUPLEX,
1.0*sc, txt_color_bg, 2, cv2.LINE_AA)
cv2.putText(out, t, (int(8*sc), Ht*(i+1)), cv2.FONT_HERSHEY_DUPLEX,
1.0*sc, txt_color_fg, 1, cv2.LINE_AA)
out_backup = out.copy()
mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
color = (np.array(color[:, :3])*255).astype(int)[:, ::-1]
for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, color):
c = c.tolist()
cv2.line(out, (x0, y0), (x1 + margin + W0, y1),
color=c, thickness=1, lineType=cv2.LINE_AA)
# display line end-points as circles
cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA)
cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1,
lineType=cv2.LINE_AA)
# Small text.
Ht = int(18 * sc) # text height
for i, t in enumerate(reversed(small_text)):
cv2.putText(out, t, (int(8*sc), int(H-Ht*(i+.6))), cv2.FONT_HERSHEY_DUPLEX,
0.5*sc, txt_color_bg, 2, cv2.LINE_AA)
cv2.putText(out, t, (int(8*sc), int(H-Ht*(i+.6))), cv2.FONT_HERSHEY_DUPLEX,
0.5*sc, txt_color_fg, 1, cv2.LINE_AA)
if path is not None:
cv2.imwrite(str(path), out)
if opencv_display:
cv2.imshow(opencv_title, out)
cv2.waitKey(1)
return out / 2 + out_backup / 2
|