File size: 12,770 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import numpy as np
import torch
from pytlsd import lsd
from sklearn.cluster import DBSCAN
from .base_model import BaseModel
from .superpoint import SuperPoint, sample_descriptors
from ..geometry import warp_lines_torch
def lines_to_wireframe(lines, line_scores, all_descs, conf):
""" Given a set of lines, their score and dense descriptors,
merge close-by endpoints and compute a wireframe defined by
its junctions and connectivity.
Returns:
junctions: list of [num_junc, 2] tensors listing all wireframe junctions
junc_scores: list of [num_junc] tensors with the junction score
junc_descs: list of [dim, num_junc] tensors with the junction descriptors
connectivity: list of [num_junc, num_junc] bool arrays with True when 2 junctions are connected
new_lines: the new set of [b_size, num_lines, 2, 2] lines
lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the junctions of each endpoint
num_true_junctions: a list of the number of valid junctions for each image in the batch,
i.e. before filling with random ones
"""
b_size, _, _, _ = all_descs.shape
device = lines.device
endpoints = lines.reshape(b_size, -1, 2)
(junctions, junc_scores, junc_descs, connectivity, new_lines,
lines_junc_idx, num_true_junctions) = [], [], [], [], [], [], []
for bs in range(b_size):
# Cluster the junctions that are close-by
db = DBSCAN(eps=conf.nms_radius, min_samples=1).fit(
endpoints[bs].cpu().numpy())
clusters = db.labels_
n_clusters = len(set(clusters))
num_true_junctions.append(n_clusters)
# Compute the average junction and score for each cluster
clusters = torch.tensor(clusters, dtype=torch.long,
device=device)
new_junc = torch.zeros(n_clusters, 2, dtype=torch.float,
device=device)
new_junc.scatter_reduce_(0, clusters[:, None].repeat(1, 2),
endpoints[bs], reduce='mean',
include_self=False)
junctions.append(new_junc)
new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device)
new_scores.scatter_reduce_(
0, clusters, torch.repeat_interleave(line_scores[bs], 2),
reduce='mean', include_self=False)
junc_scores.append(new_scores)
# Compute the new lines
new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2))
lines_junc_idx.append(clusters.reshape(-1, 2))
# Compute the junction connectivity
junc_connect = torch.eye(n_clusters, dtype=torch.bool,
device=device)
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line
junc_connect[pairs[:, 0], pairs[:, 1]] = True
junc_connect[pairs[:, 1], pairs[:, 0]] = True
connectivity.append(junc_connect)
# Interpolate the new junction descriptors
junc_descs.append(sample_descriptors(
junctions[-1][None], all_descs[bs:(bs + 1)], 8)[0])
new_lines = torch.stack(new_lines, dim=0)
lines_junc_idx = torch.stack(lines_junc_idx, dim=0)
return (junctions, junc_scores, junc_descs, connectivity,
new_lines, lines_junc_idx, num_true_junctions)
class SPWireframeDescriptor(BaseModel):
default_conf = {
'sp_params': {
'has_detector': True,
'has_descriptor': True,
'descriptor_dim': 256,
'trainable': False,
# Inference
'return_all': True,
'sparse_outputs': True,
'nms_radius': 4,
'detection_threshold': 0.005,
'max_num_keypoints': 1000,
'force_num_keypoints': True,
'remove_borders': 4,
},
'wireframe_params': {
'merge_points': True,
'merge_line_endpoints': True,
'nms_radius': 3,
'max_n_junctions': 500,
},
'max_n_lines': 250,
'min_length': 15,
}
required_data_keys = ['image']
def _init(self, conf):
self.conf = conf
self.sp = SuperPoint(conf.sp_params)
def detect_lsd_lines(self, x, max_n_lines=None):
if max_n_lines is None:
max_n_lines = self.conf.max_n_lines
lines, scores, valid_lines = [], [], []
for b in range(len(x)):
# For each image on batch
img = (x[b].squeeze().cpu().numpy() * 255).astype(np.uint8)
if max_n_lines is None:
b_segs = lsd(img)
else:
for s in [0.3, 0.4, 0.5, 0.7, 0.8, 1.0]:
b_segs = lsd(img, scale=s)
if len(b_segs) >= max_n_lines:
break
segs_length = np.linalg.norm(b_segs[:, 2:4] - b_segs[:, 0:2], axis=1)
# Remove short lines
b_segs = b_segs[segs_length >= self.conf.min_length]
segs_length = segs_length[segs_length >= self.conf.min_length]
b_scores = b_segs[:, -1] * np.sqrt(segs_length)
# Take the most relevant segments with
indices = np.argsort(-b_scores)
if max_n_lines is not None:
indices = indices[:max_n_lines]
lines.append(torch.from_numpy(b_segs[indices, :4].reshape(-1, 2, 2)))
scores.append(torch.from_numpy(b_scores[indices]))
valid_lines.append(torch.ones_like(scores[-1], dtype=torch.bool))
lines = torch.stack(lines).to(x)
scores = torch.stack(scores).to(x)
valid_lines = torch.stack(valid_lines).to(x.device)
return lines, scores, valid_lines
def _forward(self, data):
b_size, _, h, w = data['image'].shape
device = data['image'].device
if not self.conf.sp_params.force_num_keypoints:
assert b_size == 1, "Only batch size of 1 accepted for non padded inputs"
# Line detection
if 'lines' not in data or 'line_scores' not in data:
if 'original_img' in data:
# Detect more lines, because when projecting them to the image most of them will be discarded
lines, line_scores, valid_lines = self.detect_lsd_lines(
data['original_img'], self.conf.max_n_lines * 3)
# Apply the same transformation that is applied in homography_adaptation
lines, valid_lines2 = warp_lines_torch(lines, data['H'], False, data['image'].shape[-2:])
valid_lines = valid_lines & valid_lines2
lines[~valid_lines] = -1
line_scores[~valid_lines] = 0
# Re-sort the line segments to pick the ones that are inside the image and have bigger score
sorted_scores, sorting_indices = torch.sort(line_scores, dim=-1, descending=True)
line_scores = sorted_scores[:, :self.conf.max_n_lines]
sorting_indices = sorting_indices[:, :self.conf.max_n_lines]
lines = torch.take_along_dim(lines, sorting_indices[..., None, None], 1)
valid_lines = torch.take_along_dim(valid_lines, sorting_indices, 1)
else:
lines, line_scores, valid_lines = self.detect_lsd_lines(data['image'])
else:
lines, line_scores, valid_lines = data['lines'], data['line_scores'], data['valid_lines']
if line_scores.shape[-1] != 0:
line_scores /= (line_scores.new_tensor(1e-8) + line_scores.max(dim=1).values[:, None])
# SuperPoint prediction
pred = self.sp(data)
# Remove keypoints that are too close to line endpoints
if self.conf.wireframe_params.merge_points:
kp = pred['keypoints']
line_endpts = lines.reshape(b_size, -1, 2)
dist_pt_lines = torch.norm(
kp[:, :, None] - line_endpts[:, None], dim=-1)
# For each keypoint, mark it as valid or to remove
pts_to_remove = torch.any(
dist_pt_lines < self.conf.sp_params.nms_radius, dim=2)
# Simply remove them (we assume batch_size = 1 here)
assert len(kp) == 1
pred['keypoints'] = pred['keypoints'][0][~pts_to_remove[0]][None]
pred['keypoint_scores'] = pred['keypoint_scores'][0][~pts_to_remove[0]][None]
pred['descriptors'] = pred['descriptors'][0].T[~pts_to_remove[0]].T[None]
# Connect the lines together to form a wireframe
orig_lines = lines.clone()
if self.conf.wireframe_params.merge_line_endpoints and len(lines[0]) > 0:
# Merge first close-by endpoints to connect lines
(line_points, line_pts_scores, line_descs, line_association,
lines, lines_junc_idx, num_true_junctions) = lines_to_wireframe(
lines, line_scores, pred['all_descriptors'],
conf=self.conf.wireframe_params)
# Add the keypoints to the junctions and fill the rest with random keypoints
(all_points, all_scores, all_descs,
pl_associativity) = [], [], [], []
for bs in range(b_size):
all_points.append(torch.cat(
[line_points[bs], pred['keypoints'][bs]], dim=0))
all_scores.append(torch.cat(
[line_pts_scores[bs], pred['keypoint_scores'][bs]], dim=0))
all_descs.append(torch.cat(
[line_descs[bs], pred['descriptors'][bs]], dim=1))
associativity = torch.eye(len(all_points[-1]), dtype=torch.bool, device=device)
associativity[:num_true_junctions[bs], :num_true_junctions[bs]] = \
line_association[bs][:num_true_junctions[bs], :num_true_junctions[bs]]
pl_associativity.append(associativity)
all_points = torch.stack(all_points, dim=0)
all_scores = torch.stack(all_scores, dim=0)
all_descs = torch.stack(all_descs, dim=0)
pl_associativity = torch.stack(pl_associativity, dim=0)
else:
# Lines are independent
all_points = torch.cat([lines.reshape(b_size, -1, 2),
pred['keypoints']], dim=1)
n_pts = all_points.shape[1]
num_lines = lines.shape[1]
num_true_junctions = [num_lines * 2] * b_size
all_scores = torch.cat([
torch.repeat_interleave(line_scores, 2, dim=1),
pred['keypoint_scores']], dim=1)
pred['line_descriptors'] = self.endpoints_pooling(
lines, pred['all_descriptors'], (h, w))
all_descs = torch.cat([
pred['line_descriptors'].reshape(b_size, self.conf.sp_params.descriptor_dim, -1),
pred['descriptors']], dim=2)
pl_associativity = torch.eye(
n_pts, dtype=torch.bool,
device=device)[None].repeat(b_size, 1, 1)
lines_junc_idx = torch.arange(
num_lines * 2, device=device).reshape(1, -1, 2).repeat(b_size, 1, 1)
del pred['all_descriptors'] # Remove dense descriptors to save memory
torch.cuda.empty_cache()
return {'keypoints': all_points,
'keypoint_scores': all_scores,
'descriptors': all_descs,
'pl_associativity': pl_associativity,
'num_junctions': torch.tensor(num_true_junctions),
'lines': lines,
'orig_lines': orig_lines,
'lines_junc_idx': lines_junc_idx,
'line_scores': line_scores,
'valid_lines': valid_lines}
@staticmethod
def endpoints_pooling(segs, all_descriptors, img_shape):
assert segs.ndim == 4 and segs.shape[-2:] == (2, 2)
filter_shape = all_descriptors.shape[-2:]
scale_x = filter_shape[1] / img_shape[1]
scale_y = filter_shape[0] / img_shape[0]
scaled_segs = torch.round(segs * torch.tensor([scale_x, scale_y]).to(segs)).long()
scaled_segs[..., 0] = torch.clip(scaled_segs[..., 0], 0, filter_shape[1] - 1)
scaled_segs[..., 1] = torch.clip(scaled_segs[..., 1], 0, filter_shape[0] - 1)
line_descriptors = [all_descriptors[None, b, ..., torch.squeeze(b_segs[..., 1]), torch.squeeze(b_segs[..., 0])]
for b, b_segs in enumerate(scaled_segs)]
line_descriptors = torch.cat(line_descriptors)
return line_descriptors # Shape (1, 256, 308, 2)
def loss(self, pred, data):
raise NotImplementedError
def metrics(self, pred, data):
return {}
|