File size: 20,425 Bytes
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import warnings
import numpy as np
import cv2
import math
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import torch.nn.functional as F
from PIL import Image
import kornia

def recover_pose(E, kpts0, kpts1, K0, K1, mask):
    best_num_inliers = 0
    K0inv = np.linalg.inv(K0[:2,:2])
    K1inv = np.linalg.inv(K1[:2,:2])

    kpts0_n = (K0inv @ (kpts0-K0[None,:2,2]).T).T 
    kpts1_n = (K1inv @ (kpts1-K1[None,:2,2]).T).T

    for _E in np.split(E, len(E) / 3):
        n, R, t, _ = cv2.recoverPose(_E, kpts0_n, kpts1_n, np.eye(3), 1e9, mask=mask)
        if n > best_num_inliers:
            best_num_inliers = n
            ret = (R, t, mask.ravel() > 0)
    return ret



# Code taken from https://github.com/PruneTruong/DenseMatching/blob/40c29a6b5c35e86b9509e65ab0cd12553d998e5f/validation/utils_pose_estimation.py
# --- GEOMETRY ---
def estimate_pose(kpts0, kpts1, K0, K1, norm_thresh, conf=0.99999):
    if len(kpts0) < 5:
        return None
    K0inv = np.linalg.inv(K0[:2,:2])
    K1inv = np.linalg.inv(K1[:2,:2])

    kpts0 = (K0inv @ (kpts0-K0[None,:2,2]).T).T 
    kpts1 = (K1inv @ (kpts1-K1[None,:2,2]).T).T
    E, mask = cv2.findEssentialMat(
        kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf
    )

    ret = None
    if E is not None:
        best_num_inliers = 0

        for _E in np.split(E, len(E) / 3):
            n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
            if n > best_num_inliers:
                best_num_inliers = n
                ret = (R, t, mask.ravel() > 0)
    return ret

def estimate_pose_uncalibrated(kpts0, kpts1, K0, K1, norm_thresh, conf=0.99999):
    if len(kpts0) < 5:
        return None
    method = cv2.USAC_ACCURATE
    F, mask = cv2.findFundamentalMat(
        kpts0, kpts1, ransacReprojThreshold=norm_thresh, confidence=conf, method=method, maxIters=10000
    )
    E = K1.T@F@K0
    ret = None
    if E is not None:
        best_num_inliers = 0
        K0inv = np.linalg.inv(K0[:2,:2])
        K1inv = np.linalg.inv(K1[:2,:2])

        kpts0_n = (K0inv @ (kpts0-K0[None,:2,2]).T).T 
        kpts1_n = (K1inv @ (kpts1-K1[None,:2,2]).T).T
 
        for _E in np.split(E, len(E) / 3):
            n, R, t, _ = cv2.recoverPose(_E, kpts0_n, kpts1_n, np.eye(3), 1e9, mask=mask)
            if n > best_num_inliers:
                best_num_inliers = n
                ret = (R, t, mask.ravel() > 0)
    return ret

def unnormalize_coords(x_n,h,w):
    x = torch.stack(
        (w * (x_n[..., 0] + 1) / 2, h * (x_n[..., 1] + 1) / 2), dim=-1
    )  # [-1+1/h, 1-1/h] -> [0.5, h-0.5]
    return x


def rotate_intrinsic(K, n):
    base_rot = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]])
    rot = np.linalg.matrix_power(base_rot, n)
    return rot @ K


def rotate_pose_inplane(i_T_w, rot):
    rotation_matrices = [
        np.array(
            [
                [np.cos(r), -np.sin(r), 0.0, 0.0],
                [np.sin(r), np.cos(r), 0.0, 0.0],
                [0.0, 0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0, 1.0],
            ],
            dtype=np.float32,
        )
        for r in [np.deg2rad(d) for d in (0, 270, 180, 90)]
    ]
    return np.dot(rotation_matrices[rot], i_T_w)


def scale_intrinsics(K, scales):
    scales = np.diag([1.0 / scales[0], 1.0 / scales[1], 1.0])
    return np.dot(scales, K)


def to_homogeneous(points):
    return np.concatenate([points, np.ones_like(points[:, :1])], axis=-1)


def angle_error_mat(R1, R2):
    cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2
    cos = np.clip(cos, -1.0, 1.0)  # numercial errors can make it out of bounds
    return np.rad2deg(np.abs(np.arccos(cos)))


def angle_error_vec(v1, v2):
    n = np.linalg.norm(v1) * np.linalg.norm(v2)
    return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0)))


def compute_pose_error(T_0to1, R, t):
    R_gt = T_0to1[:3, :3]
    t_gt = T_0to1[:3, 3]
    error_t = angle_error_vec(t.squeeze(), t_gt)
    error_t = np.minimum(error_t, 180 - error_t)  # ambiguity of E estimation
    error_R = angle_error_mat(R, R_gt)
    return error_t, error_R


def pose_auc(errors, thresholds):
    sort_idx = np.argsort(errors)
    errors = np.array(errors.copy())[sort_idx]
    recall = (np.arange(len(errors)) + 1) / len(errors)
    errors = np.r_[0.0, errors]
    recall = np.r_[0.0, recall]
    aucs = []
    for t in thresholds:
        last_index = np.searchsorted(errors, t)
        r = np.r_[recall[:last_index], recall[last_index - 1]]
        e = np.r_[errors[:last_index], t]
        aucs.append(np.trapz(r, x=e) / t)
    return aucs


# From Patch2Pix https://github.com/GrumpyZhou/patch2pix
def get_depth_tuple_transform_ops_nearest_exact(resize=None):
    ops = []
    if resize:
        ops.append(TupleResizeNearestExact(resize))
    return TupleCompose(ops)

def get_depth_tuple_transform_ops(resize=None, normalize=True, unscale=False):
    ops = []
    if resize:
        ops.append(TupleResize(resize, mode=InterpolationMode.BILINEAR))
    return TupleCompose(ops)


def get_tuple_transform_ops(resize=None, normalize=True, unscale=False, clahe = False, colorjiggle_params = None):
    ops = []
    if resize:
        ops.append(TupleResize(resize))
    ops.append(TupleToTensorScaled())
    if normalize:
        ops.append(
            TupleNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        )  # Imagenet mean/std
    return TupleCompose(ops)

class ToTensorScaled(object):
    """Convert a RGB PIL Image to a CHW ordered Tensor, scale the range to [0, 1]"""

    def __call__(self, im):
        if not isinstance(im, torch.Tensor):
            im = np.array(im, dtype=np.float32).transpose((2, 0, 1))
            im /= 255.0
            return torch.from_numpy(im)
        else:
            return im

    def __repr__(self):
        return "ToTensorScaled(./255)"


class TupleToTensorScaled(object):
    def __init__(self):
        self.to_tensor = ToTensorScaled()

    def __call__(self, im_tuple):
        return [self.to_tensor(im) for im in im_tuple]

    def __repr__(self):
        return "TupleToTensorScaled(./255)"


class ToTensorUnscaled(object):
    """Convert a RGB PIL Image to a CHW ordered Tensor"""

    def __call__(self, im):
        return torch.from_numpy(np.array(im, dtype=np.float32).transpose((2, 0, 1)))

    def __repr__(self):
        return "ToTensorUnscaled()"


class TupleToTensorUnscaled(object):
    """Convert a RGB PIL Image to a CHW ordered Tensor"""

    def __init__(self):
        self.to_tensor = ToTensorUnscaled()

    def __call__(self, im_tuple):
        return [self.to_tensor(im) for im in im_tuple]

    def __repr__(self):
        return "TupleToTensorUnscaled()"

class TupleResizeNearestExact:
    def __init__(self, size):
        self.size = size
    def __call__(self, im_tuple):
        return [F.interpolate(im, size = self.size, mode = 'nearest-exact') for im in im_tuple]

    def __repr__(self):
        return "TupleResizeNearestExact(size={})".format(self.size)


class TupleResize(object):
    def __init__(self, size, mode=InterpolationMode.BICUBIC):
        self.size = size
        self.resize = transforms.Resize(size, mode)
    def __call__(self, im_tuple):
        return [self.resize(im) for im in im_tuple]

    def __repr__(self):
        return "TupleResize(size={})".format(self.size)
    
class Normalize:
    def __call__(self,im):
        mean = im.mean(dim=(1,2), keepdims=True)
        std = im.std(dim=(1,2), keepdims=True)
        return (im-mean)/std


class TupleNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std
        self.normalize = transforms.Normalize(mean=mean, std=std)

    def __call__(self, im_tuple):
        c,h,w = im_tuple[0].shape
        if c > 3:
            warnings.warn(f"Number of channels c={c} > 3, assuming first 3 are rgb")
        return [self.normalize(im[:3]) for im in im_tuple]

    def __repr__(self):
        return "TupleNormalize(mean={}, std={})".format(self.mean, self.std)


class TupleCompose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, im_tuple):
        for t in self.transforms:
            im_tuple = t(im_tuple)
        return im_tuple

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string

@torch.no_grad()
def cls_to_flow(cls, deterministic_sampling = True):
    B,C,H,W = cls.shape
    device = cls.device
    res = round(math.sqrt(C))
    G = torch.meshgrid(*[torch.linspace(-1+1/res, 1-1/res, steps = res, device = device) for _ in range(2)])
    G = torch.stack([G[1],G[0]],dim=-1).reshape(C,2)
    if deterministic_sampling:
        sampled_cls = cls.max(dim=1).indices
    else:
        sampled_cls = torch.multinomial(cls.permute(0,2,3,1).reshape(B*H*W,C).softmax(dim=-1), 1).reshape(B,H,W)
    flow = G[sampled_cls]
    return flow

@torch.no_grad()
def cls_to_flow_refine(cls):
    B,C,H,W = cls.shape
    device = cls.device
    res = round(math.sqrt(C))
    G = torch.meshgrid(*[torch.linspace(-1+1/res, 1-1/res, steps = res, device = device) for _ in range(2)])
    G = torch.stack([G[1],G[0]],dim=-1).reshape(C,2)
    cls = cls.softmax(dim=1)
    mode = cls.max(dim=1).indices
    
    index = torch.stack((mode-1, mode, mode+1, mode - res, mode + res), dim = 1).clamp(0,C - 1).long()
    neighbours = torch.gather(cls, dim = 1, index = index)[...,None]
    flow = neighbours[:,0] * G[index[:,0]] + neighbours[:,1] * G[index[:,1]] + neighbours[:,2] * G[index[:,2]] + neighbours[:,3] * G[index[:,3]] + neighbours[:,4] * G[index[:,4]]
    tot_prob = neighbours.sum(dim=1)  
    flow = flow / tot_prob
    return flow


def get_gt_warp(depth1, depth2, T_1to2, K1, K2, depth_interpolation_mode = 'bilinear', relative_depth_error_threshold = 0.05, H = None, W = None):
    
    if H is None:
        B,H,W = depth1.shape
    else:
        B = depth1.shape[0]
    with torch.no_grad():
        x1_n = torch.meshgrid(
            *[
                torch.linspace(
                    -1 + 1 / n, 1 - 1 / n, n, device=depth1.device
                )
                for n in (B, H, W)
            ]
        )
        x1_n = torch.stack((x1_n[2], x1_n[1]), dim=-1).reshape(B, H * W, 2)
        mask, x2 = warp_kpts(
            x1_n.double(),
            depth1.double(),
            depth2.double(),
            T_1to2.double(),
            K1.double(),
            K2.double(),
            depth_interpolation_mode = depth_interpolation_mode,
            relative_depth_error_threshold = relative_depth_error_threshold,
        )
        prob = mask.float().reshape(B, H, W)
        x2 = x2.reshape(B, H, W, 2)
        return x2, prob

@torch.no_grad()
def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1, smooth_mask = False, return_relative_depth_error = False, depth_interpolation_mode = "bilinear", relative_depth_error_threshold = 0.05):
    """Warp kpts0 from I0 to I1 with depth, K and Rt
    Also check covisibility and depth consistency.
    Depth is consistent if relative error < 0.2 (hard-coded).
    # https://github.com/zju3dv/LoFTR/blob/94e98b695be18acb43d5d3250f52226a8e36f839/src/loftr/utils/geometry.py adapted from here
    Args:
        kpts0 (torch.Tensor): [N, L, 2] - <x, y>, should be normalized in (-1,1)
        depth0 (torch.Tensor): [N, H, W],
        depth1 (torch.Tensor): [N, H, W],
        T_0to1 (torch.Tensor): [N, 3, 4],
        K0 (torch.Tensor): [N, 3, 3],
        K1 (torch.Tensor): [N, 3, 3],
    Returns:
        calculable_mask (torch.Tensor): [N, L]
        warped_keypoints0 (torch.Tensor): [N, L, 2] <x0_hat, y1_hat>
    """
    (
        n,
        h,
        w,
    ) = depth0.shape
    if depth_interpolation_mode == "combined":
        # Inspired by approach in inloc, try to fill holes from bilinear interpolation by nearest neighbour interpolation
        if smooth_mask:
            raise NotImplementedError("Combined bilinear and NN warp not implemented")
        valid_bilinear, warp_bilinear = warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1, 
                  smooth_mask = smooth_mask, 
                  return_relative_depth_error = return_relative_depth_error, 
                  depth_interpolation_mode = "bilinear",
                  relative_depth_error_threshold = relative_depth_error_threshold)
        valid_nearest, warp_nearest = warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1, 
                  smooth_mask = smooth_mask, 
                  return_relative_depth_error = return_relative_depth_error, 
                  depth_interpolation_mode = "nearest-exact",
                  relative_depth_error_threshold = relative_depth_error_threshold)
        nearest_valid_bilinear_invalid = (~valid_bilinear).logical_and(valid_nearest) 
        warp = warp_bilinear.clone()
        warp[nearest_valid_bilinear_invalid] = warp_nearest[nearest_valid_bilinear_invalid]
        valid = valid_bilinear | valid_nearest
        return valid, warp
        
        
    kpts0_depth = F.grid_sample(depth0[:, None], kpts0[:, :, None], mode = depth_interpolation_mode, align_corners=False)[
        :, 0, :, 0
    ]
    kpts0 = torch.stack(
        (w * (kpts0[..., 0] + 1) / 2, h * (kpts0[..., 1] + 1) / 2), dim=-1
    )  # [-1+1/h, 1-1/h] -> [0.5, h-0.5]
    # Sample depth, get calculable_mask on depth != 0
    nonzero_mask = kpts0_depth != 0

    # Unproject
    kpts0_h = (
        torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1)
        * kpts0_depth[..., None]
    )  # (N, L, 3)
    kpts0_n = K0.inverse() @ kpts0_h.transpose(2, 1)  # (N, 3, L)
    kpts0_cam = kpts0_n

    # Rigid Transform
    w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]]  # (N, 3, L)
    w_kpts0_depth_computed = w_kpts0_cam[:, 2, :]

    # Project
    w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1)  # (N, L, 3)
    w_kpts0 = w_kpts0_h[:, :, :2] / (
        w_kpts0_h[:, :, [2]] + 1e-4
    )  # (N, L, 2), +1e-4 to avoid zero depth

    # Covisible Check
    h, w = depth1.shape[1:3]
    covisible_mask = (
        (w_kpts0[:, :, 0] > 0)
        * (w_kpts0[:, :, 0] < w - 1)
        * (w_kpts0[:, :, 1] > 0)
        * (w_kpts0[:, :, 1] < h - 1)
    )
    w_kpts0 = torch.stack(
        (2 * w_kpts0[..., 0] / w - 1, 2 * w_kpts0[..., 1] / h - 1), dim=-1
    )  # from [0.5,h-0.5] -> [-1+1/h, 1-1/h]
    # w_kpts0[~covisible_mask, :] = -5 # xd

    w_kpts0_depth = F.grid_sample(
        depth1[:, None], w_kpts0[:, :, None], mode=depth_interpolation_mode, align_corners=False
    )[:, 0, :, 0]
    
    relative_depth_error = (
        (w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth
    ).abs()
    if not smooth_mask:
        consistent_mask = relative_depth_error < relative_depth_error_threshold
    else:
        consistent_mask = (-relative_depth_error/smooth_mask).exp()
    valid_mask = nonzero_mask * covisible_mask * consistent_mask
    if return_relative_depth_error:
        return relative_depth_error, w_kpts0
    else:
        return valid_mask, w_kpts0

imagenet_mean = torch.tensor([0.485, 0.456, 0.406])
imagenet_std = torch.tensor([0.229, 0.224, 0.225])


def numpy_to_pil(x: np.ndarray):
    """
    Args:
        x: Assumed to be of shape (h,w,c)
    """
    if isinstance(x, torch.Tensor):
        x = x.detach().cpu().numpy()
    if x.max() <= 1.01:
        x *= 255
    x = x.astype(np.uint8)
    return Image.fromarray(x)


def tensor_to_pil(x, unnormalize=False):
    if unnormalize:
        x = x * (imagenet_std[:, None, None].to(x.device)) + (imagenet_mean[:, None, None].to(x.device))
    x = x.detach().permute(1, 2, 0).cpu().numpy()
    x = np.clip(x, 0.0, 1.0)
    return numpy_to_pil(x)


def to_cuda(batch):
    for key, value in batch.items():
        if isinstance(value, torch.Tensor):
            batch[key] = value.cuda()
    return batch


def to_cpu(batch):
    for key, value in batch.items():
        if isinstance(value, torch.Tensor):
            batch[key] = value.cpu()
    return batch


def get_pose(calib):
    w, h = np.array(calib["imsize"])[0]
    return np.array(calib["K"]), np.array(calib["R"]), np.array(calib["T"]).T, h, w


def compute_relative_pose(R1, t1, R2, t2):
    rots = R2 @ (R1.T)
    trans = -rots @ t1 + t2
    return rots, trans

@torch.no_grad()
def reset_opt(opt):
    for group in opt.param_groups:
        for p in group['params']:
            if p.requires_grad:
                state = opt.state[p]
                # State initialization

                # Exponential moving average of gradient values
                state['exp_avg'] = torch.zeros_like(p)
                # Exponential moving average of squared gradient values
                state['exp_avg_sq'] = torch.zeros_like(p)
                # Exponential moving average of gradient difference
                state['exp_avg_diff'] = torch.zeros_like(p)


def flow_to_pixel_coords(flow, h1, w1):
    flow = (
        torch.stack(
            (
                w1 * (flow[..., 0] + 1) / 2,
                h1 * (flow[..., 1] + 1) / 2,
            ),
            axis=-1,
        )
    )
    return flow

def flow_to_normalized_coords(flow, h1, w1):
    flow = (
        torch.stack(
            (
                2 * (flow[..., 0]) / w1 - 1,
                2 * (flow[..., 1]) / h1 - 1,
            ),
            axis=-1,
        )
    )
    return flow


def warp_to_pixel_coords(warp, h1, w1, h2, w2):
    warp1 = warp[..., :2]
    warp1 = (
        torch.stack(
            (
                w1 * (warp1[..., 0] + 1) / 2,
                h1 * (warp1[..., 1] + 1) / 2,
            ),
            axis=-1,
        )
    )
    warp2 = warp[..., 2:]
    warp2 = (
        torch.stack(
            (
                w2 * (warp2[..., 0] + 1) / 2,
                h2 * (warp2[..., 1] + 1) / 2,
            ),
            axis=-1,
        )
    )
    return torch.cat((warp1,warp2), dim=-1)



def signed_point_line_distance(point, line, eps: float = 1e-9):
    r"""Return the distance from points to lines.

    Args:
       point: (possibly homogeneous) points :math:`(*, N, 2 or 3)`.
       line: lines coefficients :math:`(a, b, c)` with shape :math:`(*, N, 3)`, where :math:`ax + by + c = 0`.
       eps: Small constant for safe sqrt.

    Returns:
        the computed distance with shape :math:`(*, N)`.
    """

    if not point.shape[-1] in (2, 3):
        raise ValueError(f"pts must be a (*, 2 or 3) tensor. Got {point.shape}")

    if not line.shape[-1] == 3:
        raise ValueError(f"lines must be a (*, 3) tensor. Got {line.shape}")

    numerator = (line[..., 0] * point[..., 0] + line[..., 1] * point[..., 1] + line[..., 2])
    denominator = line[..., :2].norm(dim=-1)

    return numerator / (denominator + eps)


def signed_left_to_right_epipolar_distance(pts1, pts2, Fm):
    r"""Return one-sided epipolar distance for correspondences given the fundamental matrix.

    This method measures the distance from points in the right images to the epilines
    of the corresponding points in the left images as they reflect in the right images.

    Args:
       pts1: correspondences from the left images with shape
         :math:`(*, N, 2 or 3)`. If they are not homogeneous, converted automatically.
       pts2: correspondences from the right images with shape
         :math:`(*, N, 2 or 3)`. If they are not homogeneous, converted automatically.
       Fm: Fundamental matrices with shape :math:`(*, 3, 3)`. Called Fm to
         avoid ambiguity with torch.nn.functional.

    Returns:
        the computed Symmetrical distance with shape :math:`(*, N)`.
    """
    import kornia
    if (len(Fm.shape) < 3) or not Fm.shape[-2:] == (3, 3):
        raise ValueError(f"Fm must be a (*, 3, 3) tensor. Got {Fm.shape}")

    if pts1.shape[-1] == 2:
        pts1 = kornia.geometry.convert_points_to_homogeneous(pts1)

    F_t = Fm.transpose(dim0=-2, dim1=-1)
    line1_in_2 = pts1 @ F_t

    return signed_point_line_distance(pts2, line1_in_2)

def get_grid(b, h, w, device):
    grid = torch.meshgrid(
        *[
            torch.linspace(-1 + 1 / n, 1 - 1 / n, n, device=device)
            for n in (b, h, w)
        ]
    )
    grid = torch.stack((grid[2], grid[1]), dim=-1).reshape(b, h, w, 2)
    return grid