File size: 32,711 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 |
"""
File to process and load the Holicity dataset.
"""
import os
import math
import copy
import PIL
import numpy as np
import h5py
import cv2
import pickle
from skimage.io import imread
from skimage import color
import torch
import torch.utils.data.dataloader as torch_loader
from torch.utils.data import Dataset
from torchvision import transforms
from ..config.project_config import Config as cfg
from .transforms import photometric_transforms as photoaug
from .transforms import homographic_transforms as homoaug
from .transforms.utils import random_scaling
from .synthetic_util import get_line_heatmap
from ..misc.geometry_utils import warp_points, mask_points
from ..misc.train_utils import parse_h5_data
def holicity_collate_fn(batch):
""" Customized collate_fn. """
batch_keys = ["image", "junction_map", "valid_mask", "heatmap",
"heatmap_pos", "heatmap_neg", "homography",
"line_points", "line_indices"]
list_keys = ["junctions", "line_map", "line_map_pos",
"line_map_neg", "file_key"]
outputs = {}
for data_key in batch[0].keys():
batch_match = sum([_ in data_key for _ in batch_keys])
list_match = sum([_ in data_key for _ in list_keys])
# print(batch_match, list_match)
if batch_match > 0 and list_match == 0:
outputs[data_key] = torch_loader.default_collate(
[b[data_key] for b in batch])
elif batch_match == 0 and list_match > 0:
outputs[data_key] = [b[data_key] for b in batch]
elif batch_match == 0 and list_match == 0:
continue
else:
raise ValueError(
"[Error] A key matches batch keys and list keys simultaneously.")
return outputs
class HolicityDataset(Dataset):
def __init__(self, mode="train", config=None):
super(HolicityDataset, self).__init__()
if not mode in ["train", "test"]:
raise ValueError(
"[Error] Unknown mode for Holicity dataset. Only 'train' and 'test'.")
self.mode = mode
if config is None:
self.config = self.get_default_config()
else:
self.config = config
# Also get the default config
self.default_config = self.get_default_config()
# Get cache setting
self.dataset_name = self.get_dataset_name()
self.cache_name = self.get_cache_name()
self.cache_path = cfg.holicity_cache_path
# Get the ground truth source if it exists
self.gt_source = None
if "gt_source_%s"%(self.mode) in self.config:
self.gt_source = self.config.get("gt_source_%s"%(self.mode))
self.gt_source = os.path.join(cfg.export_dataroot, self.gt_source)
# Check the full path exists
if not os.path.exists(self.gt_source):
raise ValueError(
"[Error] The specified ground truth source does not exist.")
# Get the filename dataset
print("[Info] Initializing Holicity dataset...")
self.filename_dataset, self.datapoints = self.construct_dataset()
# Get dataset length
self.dataset_length = len(self.datapoints)
# Print some info
print("[Info] Successfully initialized dataset")
print("\t Name: Holicity")
print("\t Mode: %s" %(self.mode))
print("\t Gt: %s" %(self.config.get("gt_source_%s"%(self.mode),
"None")))
print("\t Counts: %d" %(self.dataset_length))
print("----------------------------------------")
#######################################
## Dataset construction related APIs ##
#######################################
def construct_dataset(self):
""" Construct the dataset (from scratch or from cache). """
# Check if the filename cache exists
# If cache exists, load from cache
if self.check_dataset_cache():
print("\t Found filename cache %s at %s"%(self.cache_name,
self.cache_path))
print("\t Load filename cache...")
filename_dataset, datapoints = self.get_filename_dataset_from_cache()
# If not, initialize dataset from scratch
else:
print("\t Can't find filename cache ...")
print("\t Create filename dataset from scratch...")
filename_dataset, datapoints = self.get_filename_dataset()
print("\t Create filename dataset cache...")
self.create_filename_dataset_cache(filename_dataset, datapoints)
return filename_dataset, datapoints
def create_filename_dataset_cache(self, filename_dataset, datapoints):
""" Create filename dataset cache for faster initialization. """
# Check cache path exists
if not os.path.exists(self.cache_path):
os.makedirs(self.cache_path)
cache_file_path = os.path.join(self.cache_path, self.cache_name)
data = {
"filename_dataset": filename_dataset,
"datapoints": datapoints
}
with open(cache_file_path, "wb") as f:
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
def get_filename_dataset_from_cache(self):
""" Get filename dataset from cache. """
# Load from pkl cache
cache_file_path = os.path.join(self.cache_path, self.cache_name)
with open(cache_file_path, "rb") as f:
data = pickle.load(f)
return data["filename_dataset"], data["datapoints"]
def get_filename_dataset(self):
""" Get the path to the dataset. """
if self.mode == "train":
# Contains 5720 or 11872 images
dataset_path = [os.path.join(cfg.holicity_dataroot, p)
for p in self.config["train_splits"]]
else:
# Test mode - Contains 520 images
dataset_path = [os.path.join(cfg.holicity_dataroot, "2018-03")]
# Get paths to all image files
image_paths = []
for folder in dataset_path:
image_paths += [os.path.join(folder, img)
for img in os.listdir(folder)
if os.path.splitext(img)[-1] == ".jpg"]
image_paths = sorted(image_paths)
# Verify all the images exist
for idx in range(len(image_paths)):
image_path = image_paths[idx]
if not (os.path.exists(image_path)):
raise ValueError(
"[Error] The image does not exist. %s"%(image_path))
# Construct the filename dataset
num_pad = int(math.ceil(math.log10(len(image_paths))) + 1)
filename_dataset = {}
for idx in range(len(image_paths)):
# Get the file key
key = self.get_padded_filename(num_pad, idx)
filename_dataset[key] = {"image": image_paths[idx]}
# Get the datapoints
datapoints = list(sorted(filename_dataset.keys()))
return filename_dataset, datapoints
def get_dataset_name(self):
""" Get dataset name from dataset config / default config. """
dataset_name = self.config.get("dataset_name",
self.default_config["dataset_name"])
dataset_name = dataset_name + "_%s" % self.mode
return dataset_name
def get_cache_name(self):
""" Get cache name from dataset config / default config. """
dataset_name = self.config.get("dataset_name",
self.default_config["dataset_name"])
dataset_name = dataset_name + "_%s" % self.mode
# Compose cache name
cache_name = dataset_name + "_cache.pkl"
return cache_name
def check_dataset_cache(self):
""" Check if dataset cache exists. """
cache_file_path = os.path.join(self.cache_path, self.cache_name)
if os.path.exists(cache_file_path):
return True
else:
return False
@staticmethod
def get_padded_filename(num_pad, idx):
""" Get the padded filename using adaptive padding. """
file_len = len("%d" % (idx))
filename = "0" * (num_pad - file_len) + "%d" % (idx)
return filename
def get_default_config(self):
""" Get the default configuration. """
return {
"dataset_name": "holicity",
"train_split": "2018-01",
"add_augmentation_to_all_splits": False,
"preprocessing": {
"resize": [512, 512],
"blur_size": 11
},
"augmentation":{
"photometric":{
"enable": False
},
"homographic":{
"enable": False
},
},
}
############################################
## Pytorch and preprocessing related APIs ##
############################################
@staticmethod
def get_data_from_path(data_path):
""" Get data from the information from filename dataset. """
output = {}
# Get image data
image_path = data_path["image"]
image = imread(image_path)
output["image"] = image
return output
@staticmethod
def convert_line_map(lcnn_line_map, num_junctions):
""" Convert the line_pos or line_neg
(represented by two junction indexes) to our line map. """
# Initialize empty line map
line_map = np.zeros([num_junctions, num_junctions])
# Iterate through all the lines
for idx in range(lcnn_line_map.shape[0]):
index1 = lcnn_line_map[idx, 0]
index2 = lcnn_line_map[idx, 1]
line_map[index1, index2] = 1
line_map[index2, index1] = 1
return line_map
@staticmethod
def junc_to_junc_map(junctions, image_size):
""" Convert junction points to junction maps. """
junctions = np.round(junctions).astype(np.int)
# Clip the boundary by image size
junctions[:, 0] = np.clip(junctions[:, 0], 0., image_size[0]-1)
junctions[:, 1] = np.clip(junctions[:, 1], 0., image_size[1]-1)
# Create junction map
junc_map = np.zeros([image_size[0], image_size[1]])
junc_map[junctions[:, 0], junctions[:, 1]] = 1
return junc_map[..., None].astype(np.int)
def parse_transforms(self, names, all_transforms):
""" Parse the transform. """
trans = all_transforms if (names == 'all') \
else (names if isinstance(names, list) else [names])
assert set(trans) <= set(all_transforms)
return trans
def get_photo_transform(self):
""" Get list of photometric transforms (according to the config). """
# Get the photometric transform config
photo_config = self.config["augmentation"]["photometric"]
if not photo_config["enable"]:
raise ValueError(
"[Error] Photometric augmentation is not enabled.")
# Parse photometric transforms
trans_lst = self.parse_transforms(photo_config["primitives"],
photoaug.available_augmentations)
trans_config_lst = [photo_config["params"].get(p, {})
for p in trans_lst]
# List of photometric augmentation
photometric_trans_lst = [
getattr(photoaug, trans)(**conf) \
for (trans, conf) in zip(trans_lst, trans_config_lst)
]
return photometric_trans_lst
def get_homo_transform(self):
""" Get homographic transforms (according to the config). """
# Get homographic transforms for image
homo_config = self.config["augmentation"]["homographic"]["params"]
if not self.config["augmentation"]["homographic"]["enable"]:
raise ValueError(
"[Error] Homographic augmentation is not enabled")
# Parse the homographic transforms
image_shape = self.config["preprocessing"]["resize"]
# Compute the min_label_len from config
try:
min_label_tmp = self.config["generation"]["min_label_len"]
except:
min_label_tmp = None
# float label len => fraction
if isinstance(min_label_tmp, float): # Skip if not provided
min_label_len = min_label_tmp * min(image_shape)
# int label len => length in pixel
elif isinstance(min_label_tmp, int):
scale_ratio = (self.config["preprocessing"]["resize"]
/ self.config["generation"]["image_size"][0])
min_label_len = (self.config["generation"]["min_label_len"]
* scale_ratio)
# if none => no restriction
else:
min_label_len = 0
# Initialize the transform
homographic_trans = homoaug.homography_transform(
image_shape, homo_config, 0, min_label_len)
return homographic_trans
def get_line_points(self, junctions, line_map, H1=None, H2=None,
img_size=None, warp=False):
""" Sample evenly points along each line segments
and keep track of line idx. """
if np.sum(line_map) == 0:
# No segment detected in the image
line_indices = np.zeros(self.config["max_pts"], dtype=int)
line_points = np.zeros((self.config["max_pts"], 2), dtype=float)
return line_points, line_indices
# Extract all pairs of connected junctions
junc_indices = np.array(
[[i, j] for (i, j) in zip(*np.where(line_map)) if j > i])
line_segments = np.stack([junctions[junc_indices[:, 0]],
junctions[junc_indices[:, 1]]], axis=1)
# line_segments is (num_lines, 2, 2)
line_lengths = np.linalg.norm(
line_segments[:, 0] - line_segments[:, 1], axis=1)
# Sample the points separated by at least min_dist_pts along each line
# The number of samples depends on the length of the line
num_samples = np.minimum(line_lengths // self.config["min_dist_pts"],
self.config["max_num_samples"])
line_points = []
line_indices = []
cur_line_idx = 1
for n in np.arange(2, self.config["max_num_samples"] + 1):
# Consider all lines where we can fit up to n points
cur_line_seg = line_segments[num_samples == n]
line_points_x = np.linspace(cur_line_seg[:, 0, 0],
cur_line_seg[:, 1, 0],
n, axis=-1).flatten()
line_points_y = np.linspace(cur_line_seg[:, 0, 1],
cur_line_seg[:, 1, 1],
n, axis=-1).flatten()
jitter = self.config.get("jittering", 0)
if jitter:
# Add a small random jittering of all points along the line
angles = np.arctan2(
cur_line_seg[:, 1, 0] - cur_line_seg[:, 0, 0],
cur_line_seg[:, 1, 1] - cur_line_seg[:, 0, 1]).repeat(n)
jitter_hyp = (np.random.rand(len(angles)) * 2 - 1) * jitter
line_points_x += jitter_hyp * np.sin(angles)
line_points_y += jitter_hyp * np.cos(angles)
line_points.append(np.stack([line_points_x, line_points_y], axis=-1))
# Keep track of the line indices for each sampled point
num_cur_lines = len(cur_line_seg)
line_idx = np.arange(cur_line_idx, cur_line_idx + num_cur_lines)
line_indices.append(line_idx.repeat(n))
cur_line_idx += num_cur_lines
line_points = np.concatenate(line_points,
axis=0)[:self.config["max_pts"]]
line_indices = np.concatenate(line_indices,
axis=0)[:self.config["max_pts"]]
# Warp the points if need be, and filter unvalid ones
# If the other view is also warped
if warp and H2 is not None:
warp_points2 = warp_points(line_points, H2)
line_points = warp_points(line_points, H1)
mask = mask_points(line_points, img_size)
mask2 = mask_points(warp_points2, img_size)
mask = mask * mask2
# If the other view is not warped
elif warp and H2 is None:
line_points = warp_points(line_points, H1)
mask = mask_points(line_points, img_size)
else:
if H1 is not None:
raise ValueError("[Error] Wrong combination of homographies.")
# Remove points that would be outside of img_size if warped by H
warped_points = warp_points(line_points, H1)
mask = mask_points(warped_points, img_size)
line_points = line_points[mask]
line_indices = line_indices[mask]
# Pad the line points to a fixed length
# Index of 0 means padded line
line_indices = np.concatenate([line_indices, np.zeros(
self.config["max_pts"] - len(line_indices))], axis=0)
line_points = np.concatenate(
[line_points,
np.zeros((self.config["max_pts"] - len(line_points), 2),
dtype=float)], axis=0)
return line_points, line_indices
def export_preprocessing(self, data, numpy=False):
""" Preprocess the exported data. """
# Fetch the corresponding entries
image = data["image"]
image_size = image.shape[:2]
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
image = photoaug.normalize_image()(image)
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
if not numpy:
return {"image": to_tensor(image)}
else:
return {"image": image}
def train_preprocessing_exported(
self, data, numpy=False, disable_homoaug=False, desc_training=False,
H1=None, H1_scale=None, H2=None, scale=1., h_crop=None, w_crop=None):
""" Train preprocessing for the exported labels. """
data = copy.deepcopy(data)
# Fetch the corresponding entries
image = data["image"]
junctions = data["junctions"]
line_map = data["line_map"]
image_size = image.shape[:2]
# Define the random crop for scaling if necessary
if h_crop is None or w_crop is None:
h_crop, w_crop = 0, 0
if scale > 1:
H, W = self.config["preprocessing"]["resize"]
H_scale, W_scale = round(H * scale), round(W * scale)
if H_scale > H:
h_crop = np.random.randint(H_scale - H)
if W_scale > W:
w_crop = np.random.randint(W_scale - W)
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# # In HW format
# junctions = (junctions * np.array(
# self.config['preprocessing']['resize'], np.float)
# / np.array(size_old, np.float))
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
image_size = image.shape[:2]
heatmap = get_line_heatmap(junctions_xy, line_map, image_size)
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
# Check if we need to apply augmentations
# In training mode => yes.
# In homography adaptation mode (export mode) => No
if self.config["augmentation"]["photometric"]["enable"]:
photo_trans_lst = self.get_photo_transform()
### Image transform ###
np.random.shuffle(photo_trans_lst)
image_transform = transforms.Compose(
photo_trans_lst + [photoaug.normalize_image()])
else:
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Perform the random scaling
if scale != 1.:
image, junctions, line_map, valid_mask = random_scaling(
image, junctions, line_map, scale,
h_crop=h_crop, w_crop=w_crop)
else:
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
# Initialize the empty output dict
outputs = {}
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
# Check homographic augmentation
warp = (self.config["augmentation"]["homographic"]["enable"]
and disable_homoaug == False)
if warp:
homo_trans = self.get_homo_transform()
# Perform homographic transform
if H1 is None:
homo_outputs = homo_trans(image, junctions, line_map,
valid_mask=valid_mask)
else:
homo_outputs = homo_trans(
image, junctions, line_map, homo=H1, scale=H1_scale,
valid_mask=valid_mask)
homography_mat = homo_outputs["homo"]
# Give the warp of the other view
if H1 is None:
H1 = homo_outputs["homo"]
# Sample points along each line segments for the descriptor
if desc_training:
line_points, line_indices = self.get_line_points(
junctions, line_map, H1=H1, H2=H2,
img_size=image_size, warp=warp)
# Record the warped results
if warp:
junctions = homo_outputs["junctions"] # Should be HW format
image = homo_outputs["warped_image"]
line_map = homo_outputs["line_map"]
valid_mask = homo_outputs["valid_mask"] # Same for pos and neg
heatmap = homo_outputs["warped_heatmap"]
# Optionally put warping information first.
if not numpy:
outputs["homography_mat"] = to_tensor(
homography_mat).to(torch.float32)[0, ...]
else:
outputs["homography_mat"] = homography_mat.astype(np.float32)
junction_map = self.junc_to_junc_map(junctions, image_size)
if not numpy:
outputs.update({
"image": to_tensor(image),
"junctions": to_tensor(junctions).to(torch.float32)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map": to_tensor(line_map).to(torch.int32)[0, ...],
"heatmap": to_tensor(heatmap).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
})
if desc_training:
outputs.update({
"line_points": to_tensor(
line_points).to(torch.float32)[0],
"line_indices": torch.tensor(line_indices,
dtype=torch.int)
})
else:
outputs.update({
"image": image,
"junctions": junctions.astype(np.float32),
"junction_map": junction_map.astype(np.int32),
"line_map": line_map.astype(np.int32),
"heatmap": heatmap.astype(np.int32),
"valid_mask": valid_mask.astype(np.int32)
})
if desc_training:
outputs.update({
"line_points": line_points.astype(np.float32),
"line_indices": line_indices.astype(int)
})
return outputs
def preprocessing_exported_paired_desc(self, data, numpy=False, scale=1.):
""" Train preprocessing for paired data for the exported labels
for descriptor training. """
outputs = {}
# Define the random crop for scaling if necessary
h_crop, w_crop = 0, 0
if scale > 1:
H, W = self.config["preprocessing"]["resize"]
H_scale, W_scale = round(H * scale), round(W * scale)
if H_scale > H:
h_crop = np.random.randint(H_scale - H)
if W_scale > W:
w_crop = np.random.randint(W_scale - W)
# Sample ref homography first
homo_config = self.config["augmentation"]["homographic"]["params"]
image_shape = self.config["preprocessing"]["resize"]
ref_H, ref_scale = homoaug.sample_homography(image_shape,
**homo_config)
# Data for target view (All augmentation)
target_data = self.train_preprocessing_exported(
data, numpy=numpy, desc_training=True, H1=None, H2=ref_H,
scale=scale, h_crop=h_crop, w_crop=w_crop)
# Data for reference view (No homographical augmentation)
ref_data = self.train_preprocessing_exported(
data, numpy=numpy, desc_training=True, H1=ref_H,
H1_scale=ref_scale, H2=target_data['homography_mat'].numpy(),
scale=scale, h_crop=h_crop, w_crop=w_crop)
# Spread ref data
for key, val in ref_data.items():
outputs["ref_" + key] = val
# Spread target data
for key, val in target_data.items():
outputs["target_" + key] = val
return outputs
def test_preprocessing_exported(self, data, numpy=False):
""" Test preprocessing for the exported labels. """
data = copy.deepcopy(data)
# Fetch the corresponding entries
image = data["image"]
junctions = data["junctions"]
line_map = data["line_map"]
image_size = image.shape[:2]
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# # In HW format
# junctions = (junctions * np.array(
# self.config['preprocessing']['resize'], np.float)
# / np.array(size_old, np.float))
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
# Still need to normalize image
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
image_size = image.shape[:2]
heatmap = get_line_heatmap(junctions_xy, line_map, image_size)
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
junction_map = self.junc_to_junc_map(junctions, image_size)
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
if not numpy:
outputs = {
"image": to_tensor(image),
"junctions": to_tensor(junctions).to(torch.float32)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map": to_tensor(line_map).to(torch.int32)[0, ...],
"heatmap": to_tensor(heatmap).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
}
else:
outputs = {
"image": image,
"junctions": junctions.astype(np.float32),
"junction_map": junction_map.astype(np.int32),
"line_map": line_map.astype(np.int32),
"heatmap": heatmap.astype(np.int32),
"valid_mask": valid_mask.astype(np.int32)
}
return outputs
def __len__(self):
return self.dataset_length
def get_data_from_key(self, file_key):
""" Get data from file_key. """
# Check key exists
if not file_key in self.filename_dataset.keys():
raise ValueError(
"[Error] the specified key is not in the dataset.")
# Get the data paths
data_path = self.filename_dataset[file_key]
# Read in the image and npz labels
data = self.get_data_from_path(data_path)
# Perform transform and augmentation
if (self.mode == "train"
or self.config["add_augmentation_to_all_splits"]):
data = self.train_preprocessing(data, numpy=True)
else:
data = self.test_preprocessing(data, numpy=True)
# Add file key to the output
data["file_key"] = file_key
return data
def __getitem__(self, idx):
"""Return data
file_key: str, keys used to retrieve data from the filename dataset.
image: torch.float, C*H*W range 0~1,
junctions: torch.float, N*2,
junction_map: torch.int32, 1*H*W range 0 or 1,
line_map: torch.int32, N*N range 0 or 1,
heatmap: torch.int32, 1*H*W range 0 or 1,
valid_mask: torch.int32, 1*H*W range 0 or 1
"""
# Get the corresponding datapoint and contents from filename dataset
file_key = self.datapoints[idx]
data_path = self.filename_dataset[file_key]
# Read in the image and npz labels
data = self.get_data_from_path(data_path)
if self.gt_source:
with h5py.File(self.gt_source, "r") as f:
exported_label = parse_h5_data(f[file_key])
data["junctions"] = exported_label["junctions"]
data["line_map"] = exported_label["line_map"]
# Perform transform and augmentation
return_type = self.config.get("return_type", "single")
if self.gt_source is None:
# For export only
data = self.export_preprocessing(data)
elif (self.mode == "train"
or self.config["add_augmentation_to_all_splits"]):
# Perform random scaling first
if self.config["augmentation"]["random_scaling"]["enable"]:
scale_range = self.config["augmentation"]["random_scaling"]["range"]
# Decide the scaling
scale = np.random.uniform(min(scale_range), max(scale_range))
else:
scale = 1.
if self.mode == "train" and return_type == "paired_desc":
data = self.preprocessing_exported_paired_desc(data,
scale=scale)
else:
data = self.train_preprocessing_exported(data, scale=scale)
else:
if return_type == "paired_desc":
data = self.preprocessing_exported_paired_desc(data)
else:
data = self.test_preprocessing_exported(data)
# Add file key to the output
data["file_key"] = file_key
return data
|