File size: 32,711 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
"""
File to process and load the Holicity dataset.
"""
import os
import math
import copy
import PIL
import numpy as np
import h5py
import cv2
import pickle
from skimage.io import imread
from skimage import color
import torch
import torch.utils.data.dataloader as torch_loader
from torch.utils.data import Dataset
from torchvision import transforms

from ..config.project_config import Config as cfg
from .transforms import photometric_transforms as photoaug
from .transforms import homographic_transforms as homoaug
from .transforms.utils import random_scaling
from .synthetic_util import get_line_heatmap
from ..misc.geometry_utils import warp_points, mask_points
from ..misc.train_utils import parse_h5_data


def holicity_collate_fn(batch):
    """ Customized collate_fn. """
    batch_keys = ["image", "junction_map", "valid_mask", "heatmap",
                  "heatmap_pos", "heatmap_neg", "homography",
                  "line_points", "line_indices"]
    list_keys = ["junctions", "line_map", "line_map_pos",
                 "line_map_neg", "file_key"]

    outputs = {}
    for data_key in batch[0].keys():
        batch_match = sum([_ in data_key for _ in batch_keys])
        list_match = sum([_ in data_key for _ in list_keys])
        # print(batch_match, list_match)
        if batch_match > 0 and list_match == 0:
            outputs[data_key] = torch_loader.default_collate(
                [b[data_key] for b in batch])
        elif batch_match == 0 and list_match > 0:
            outputs[data_key] = [b[data_key] for b in batch]
        elif batch_match == 0 and list_match == 0:
            continue
        else:
            raise ValueError(
        "[Error] A key matches batch keys and list keys simultaneously.")

    return outputs


class HolicityDataset(Dataset):
    def __init__(self, mode="train", config=None):
        super(HolicityDataset, self).__init__()
        if not mode in ["train", "test"]:
            raise ValueError(
        "[Error] Unknown mode for Holicity dataset. Only 'train' and 'test'.")
        self.mode = mode

        if config is None:
            self.config = self.get_default_config()
        else:
            self.config = config
        # Also get the default config
        self.default_config = self.get_default_config()

        # Get cache setting
        self.dataset_name = self.get_dataset_name()
        self.cache_name = self.get_cache_name()
        self.cache_path = cfg.holicity_cache_path
        
        # Get the ground truth source if it exists
        self.gt_source = None
        if "gt_source_%s"%(self.mode) in self.config:
            self.gt_source = self.config.get("gt_source_%s"%(self.mode))
            self.gt_source = os.path.join(cfg.export_dataroot, self.gt_source)
            # Check the full path exists
            if not os.path.exists(self.gt_source):
                raise ValueError(
            "[Error] The specified ground truth source does not exist.")
        
        # Get the filename dataset
        print("[Info] Initializing Holicity dataset...")
        self.filename_dataset, self.datapoints = self.construct_dataset()

        # Get dataset length
        self.dataset_length = len(self.datapoints)

        # Print some info
        print("[Info] Successfully initialized dataset")
        print("\t Name: Holicity")
        print("\t Mode: %s" %(self.mode))
        print("\t Gt: %s" %(self.config.get("gt_source_%s"%(self.mode),
                                            "None")))
        print("\t Counts: %d" %(self.dataset_length))
        print("----------------------------------------")

    #######################################
    ## Dataset construction related APIs ##
    #######################################
    def construct_dataset(self):
        """ Construct the dataset (from scratch or from cache). """
        # Check if the filename cache exists
        # If cache exists, load from cache
        if self.check_dataset_cache():
            print("\t Found filename cache %s at %s"%(self.cache_name,
                                                      self.cache_path))
            print("\t Load filename cache...")
            filename_dataset, datapoints = self.get_filename_dataset_from_cache()
        # If not, initialize dataset from scratch
        else:
            print("\t Can't find filename cache ...")
            print("\t Create filename dataset from scratch...")
            filename_dataset, datapoints = self.get_filename_dataset()
            print("\t Create filename dataset cache...")
            self.create_filename_dataset_cache(filename_dataset, datapoints)
        
        return filename_dataset, datapoints
    
    def create_filename_dataset_cache(self, filename_dataset, datapoints):
        """ Create filename dataset cache for faster initialization. """
        # Check cache path exists
        if not os.path.exists(self.cache_path):
            os.makedirs(self.cache_path)

        cache_file_path = os.path.join(self.cache_path, self.cache_name)
        data = {
            "filename_dataset": filename_dataset,
            "datapoints": datapoints
        }
        with open(cache_file_path, "wb") as f:
            pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
    
    def get_filename_dataset_from_cache(self):
        """ Get filename dataset from cache. """
        # Load from pkl cache
        cache_file_path = os.path.join(self.cache_path, self.cache_name)
        with open(cache_file_path, "rb") as f:
            data = pickle.load(f)
        
        return data["filename_dataset"], data["datapoints"]

    def get_filename_dataset(self):
        """ Get the path to the dataset. """
        if self.mode == "train":
            # Contains 5720 or 11872 images
            dataset_path = [os.path.join(cfg.holicity_dataroot, p)
                            for p in self.config["train_splits"]]
        else:
            # Test mode - Contains 520 images
            dataset_path = [os.path.join(cfg.holicity_dataroot, "2018-03")]
        
        # Get paths to all image files
        image_paths = []
        for folder in dataset_path:
            image_paths += [os.path.join(folder, img)
                            for img in os.listdir(folder)
                            if os.path.splitext(img)[-1] == ".jpg"]
        image_paths = sorted(image_paths)

        # Verify all the images exist
        for idx in range(len(image_paths)):
            image_path = image_paths[idx]
            if not (os.path.exists(image_path)):
                raise ValueError(
            "[Error] The image does not exist. %s"%(image_path))

        # Construct the filename dataset
        num_pad = int(math.ceil(math.log10(len(image_paths))) + 1)
        filename_dataset = {}
        for idx in range(len(image_paths)):
            # Get the file key
            key = self.get_padded_filename(num_pad, idx)

            filename_dataset[key] = {"image": image_paths[idx]}
        
        # Get the datapoints
        datapoints = list(sorted(filename_dataset.keys()))

        return filename_dataset, datapoints
    
    def get_dataset_name(self):
        """ Get dataset name from dataset config / default config. """
        dataset_name = self.config.get("dataset_name",
                                       self.default_config["dataset_name"])
        dataset_name = dataset_name + "_%s" % self.mode
        return dataset_name
    
    def get_cache_name(self):
        """ Get cache name from dataset config / default config. """
        dataset_name = self.config.get("dataset_name",
                                       self.default_config["dataset_name"])
        dataset_name = dataset_name + "_%s" % self.mode
        # Compose cache name
        cache_name = dataset_name + "_cache.pkl"
        return cache_name

    def check_dataset_cache(self):
        """ Check if dataset cache exists. """
        cache_file_path = os.path.join(self.cache_path, self.cache_name)
        if os.path.exists(cache_file_path):
            return True
        else:
            return False
    
    @staticmethod
    def get_padded_filename(num_pad, idx):
        """ Get the padded filename using adaptive padding. """
        file_len = len("%d" % (idx))
        filename = "0" * (num_pad - file_len) + "%d" % (idx)
        return filename

    def get_default_config(self):
        """ Get the default configuration. """
        return {
            "dataset_name": "holicity",
            "train_split": "2018-01",
            "add_augmentation_to_all_splits": False,
            "preprocessing": {
                "resize": [512, 512],
                "blur_size": 11
            },
            "augmentation":{
                "photometric":{
                    "enable": False
                },
                "homographic":{
                    "enable": False
                },
            },
        }
        
    ############################################
    ## Pytorch and preprocessing related APIs ##
    ############################################
    @staticmethod
    def get_data_from_path(data_path):
        """ Get data from the information from filename dataset. """
        output = {}

        # Get image data
        image_path = data_path["image"]
        image = imread(image_path)
        output["image"] = image
        
        return output
    
    @staticmethod
    def convert_line_map(lcnn_line_map, num_junctions):
        """ Convert the line_pos or line_neg
            (represented by two junction indexes) to our line map. """
        # Initialize empty line map
        line_map = np.zeros([num_junctions, num_junctions])

        # Iterate through all the lines
        for idx in range(lcnn_line_map.shape[0]):
            index1 = lcnn_line_map[idx, 0]
            index2 = lcnn_line_map[idx, 1]

            line_map[index1, index2] = 1
            line_map[index2, index1] = 1
        
        return line_map

    @staticmethod
    def junc_to_junc_map(junctions, image_size):
        """ Convert junction points to junction maps. """
        junctions = np.round(junctions).astype(np.int)
        # Clip the boundary by image size
        junctions[:, 0] = np.clip(junctions[:, 0], 0., image_size[0]-1)
        junctions[:, 1] = np.clip(junctions[:, 1], 0., image_size[1]-1)

        # Create junction map
        junc_map = np.zeros([image_size[0], image_size[1]])
        junc_map[junctions[:, 0], junctions[:, 1]] = 1

        return junc_map[..., None].astype(np.int)
    
    def parse_transforms(self, names, all_transforms):
        """ Parse the transform. """
        trans = all_transforms if (names == 'all') \
            else (names if isinstance(names, list) else [names])
        assert set(trans) <= set(all_transforms)
        return trans

    def get_photo_transform(self):
        """ Get list of photometric transforms (according to the config). """
        # Get the photometric transform config
        photo_config = self.config["augmentation"]["photometric"]
        if not photo_config["enable"]:
            raise ValueError(
        "[Error] Photometric augmentation is not enabled.")
        
        # Parse photometric transforms
        trans_lst = self.parse_transforms(photo_config["primitives"],
                                          photoaug.available_augmentations)
        trans_config_lst = [photo_config["params"].get(p, {})
                            for p in trans_lst]

        # List of photometric augmentation
        photometric_trans_lst = [
            getattr(photoaug, trans)(**conf) \
            for (trans, conf) in zip(trans_lst, trans_config_lst)
        ]

        return photometric_trans_lst

    def get_homo_transform(self):
        """ Get homographic transforms (according to the config). """
        # Get homographic transforms for image
        homo_config = self.config["augmentation"]["homographic"]["params"]
        if not self.config["augmentation"]["homographic"]["enable"]:
            raise ValueError(
        "[Error] Homographic augmentation is not enabled")

        # Parse the homographic transforms
        image_shape = self.config["preprocessing"]["resize"]

        # Compute the min_label_len from config
        try:
            min_label_tmp = self.config["generation"]["min_label_len"]
        except:
            min_label_tmp = None
        
        # float label len => fraction
        if isinstance(min_label_tmp, float): # Skip if not provided
            min_label_len = min_label_tmp * min(image_shape)
        # int label len => length in pixel
        elif isinstance(min_label_tmp, int):
            scale_ratio = (self.config["preprocessing"]["resize"]
                           / self.config["generation"]["image_size"][0])
            min_label_len = (self.config["generation"]["min_label_len"]
                             * scale_ratio)
        # if none => no restriction
        else:
            min_label_len = 0
        
        # Initialize the transform
        homographic_trans = homoaug.homography_transform(
            image_shape, homo_config, 0, min_label_len)

        return homographic_trans

    def get_line_points(self, junctions, line_map, H1=None, H2=None,
                        img_size=None, warp=False):
        """ Sample evenly points along each line segments
            and keep track of line idx. """
        if np.sum(line_map) == 0:
            # No segment detected in the image
            line_indices = np.zeros(self.config["max_pts"], dtype=int)
            line_points = np.zeros((self.config["max_pts"], 2), dtype=float)
            return line_points, line_indices

        # Extract all pairs of connected junctions
        junc_indices = np.array(
            [[i, j] for (i, j) in zip(*np.where(line_map)) if j > i])
        line_segments = np.stack([junctions[junc_indices[:, 0]],
                                  junctions[junc_indices[:, 1]]], axis=1)
        # line_segments is (num_lines, 2, 2)
        line_lengths = np.linalg.norm(
            line_segments[:, 0] - line_segments[:, 1], axis=1)

        # Sample the points separated by at least min_dist_pts along each line
        # The number of samples depends on the length of the line
        num_samples = np.minimum(line_lengths // self.config["min_dist_pts"],
                                 self.config["max_num_samples"])
        line_points = []
        line_indices = []
        cur_line_idx = 1
        for n in np.arange(2, self.config["max_num_samples"] + 1):
            # Consider all lines where we can fit up to n points
            cur_line_seg = line_segments[num_samples == n]
            line_points_x = np.linspace(cur_line_seg[:, 0, 0],
                                        cur_line_seg[:, 1, 0],
                                        n, axis=-1).flatten()
            line_points_y = np.linspace(cur_line_seg[:, 0, 1],
                                        cur_line_seg[:, 1, 1],
                                        n, axis=-1).flatten()
            jitter = self.config.get("jittering", 0)
            if jitter:
                # Add a small random jittering of all points along the line
                angles = np.arctan2(
                    cur_line_seg[:, 1, 0] - cur_line_seg[:, 0, 0],
                    cur_line_seg[:, 1, 1] - cur_line_seg[:, 0, 1]).repeat(n)
                jitter_hyp = (np.random.rand(len(angles)) * 2 - 1) * jitter
                line_points_x += jitter_hyp * np.sin(angles)
                line_points_y += jitter_hyp * np.cos(angles)
            line_points.append(np.stack([line_points_x, line_points_y], axis=-1))
            # Keep track of the line indices for each sampled point
            num_cur_lines = len(cur_line_seg)
            line_idx = np.arange(cur_line_idx, cur_line_idx + num_cur_lines)
            line_indices.append(line_idx.repeat(n))
            cur_line_idx += num_cur_lines
        line_points = np.concatenate(line_points,
                                     axis=0)[:self.config["max_pts"]]
        line_indices = np.concatenate(line_indices,
                                      axis=0)[:self.config["max_pts"]]

        # Warp the points if need be, and filter unvalid ones
        # If the other view is also warped
        if warp and H2 is not None:
            warp_points2 = warp_points(line_points, H2)
            line_points = warp_points(line_points, H1)
            mask = mask_points(line_points, img_size)
            mask2 = mask_points(warp_points2, img_size)
            mask = mask * mask2
        # If the other view is not warped
        elif warp and H2 is None:
            line_points = warp_points(line_points, H1)
            mask = mask_points(line_points, img_size)
        else:
            if H1 is not None:
                raise ValueError("[Error] Wrong combination of homographies.")
            # Remove points that would be outside of img_size if warped by H
            warped_points = warp_points(line_points, H1)
            mask = mask_points(warped_points, img_size)
        line_points = line_points[mask]
        line_indices = line_indices[mask]
        
        # Pad the line points to a fixed length
        # Index of 0 means padded line
        line_indices = np.concatenate([line_indices, np.zeros(
            self.config["max_pts"] - len(line_indices))], axis=0)
        line_points = np.concatenate(
            [line_points,
             np.zeros((self.config["max_pts"] - len(line_points), 2),
                      dtype=float)], axis=0)
        
        return line_points, line_indices

    def export_preprocessing(self, data, numpy=False):
        """ Preprocess the exported data. """
        # Fetch the corresponding entries
        image = data["image"]
        image_size = image.shape[:2]

        # Resize the image before photometric and homographical augmentations
        if not(list(image_size) == self.config["preprocessing"]["resize"]):
            # Resize the image and the point location.
            size_old = list(image.shape)[:2] # Only H and W dimensions

            image = cv2.resize(
                image, tuple(self.config['preprocessing']['resize'][::-1]),
                interpolation=cv2.INTER_LINEAR)
            image = np.array(image, dtype=np.uint8)
        
        # Optionally convert the image to grayscale
        if self.config["gray_scale"]:
            image = (color.rgb2gray(image) * 255.).astype(np.uint8)

        image = photoaug.normalize_image()(image)

        # Convert to tensor and return the results
        to_tensor = transforms.ToTensor()
        if not numpy:
            return {"image": to_tensor(image)}
        else:
            return {"image": image}
    
    def train_preprocessing_exported(
        self, data, numpy=False, disable_homoaug=False, desc_training=False,
        H1=None, H1_scale=None, H2=None, scale=1., h_crop=None, w_crop=None):
        """ Train preprocessing for the exported labels. """
        data = copy.deepcopy(data)
        # Fetch the corresponding entries
        image = data["image"]
        junctions = data["junctions"]
        line_map = data["line_map"]
        image_size = image.shape[:2]

        # Define the random crop for scaling if necessary
        if h_crop is None or w_crop is None:
            h_crop, w_crop = 0, 0
            if scale > 1:
                H, W = self.config["preprocessing"]["resize"]
                H_scale, W_scale = round(H * scale), round(W * scale)
                if H_scale > H:
                    h_crop = np.random.randint(H_scale - H)
                if W_scale > W:
                    w_crop = np.random.randint(W_scale - W)

        # Resize the image before photometric and homographical augmentations
        if not(list(image_size) == self.config["preprocessing"]["resize"]):
            # Resize the image and the point location.
            size_old = list(image.shape)[:2] # Only H and W dimensions

            image = cv2.resize(
                image, tuple(self.config['preprocessing']['resize'][::-1]),
                interpolation=cv2.INTER_LINEAR)
            image = np.array(image, dtype=np.uint8)

            # # In HW format
            # junctions = (junctions * np.array(
            #     self.config['preprocessing']['resize'], np.float)
            #              / np.array(size_old, np.float))

        # Generate the line heatmap after post-processing
        junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
        image_size = image.shape[:2]
        heatmap = get_line_heatmap(junctions_xy, line_map, image_size)

        # Optionally convert the image to grayscale
        if self.config["gray_scale"]:
            image = (color.rgb2gray(image) * 255.).astype(np.uint8)

        # Check if we need to apply augmentations
        # In training mode => yes.
        # In homography adaptation mode (export mode) => No
        if self.config["augmentation"]["photometric"]["enable"]:
            photo_trans_lst = self.get_photo_transform()
            ### Image transform ###
            np.random.shuffle(photo_trans_lst)
            image_transform = transforms.Compose(
                photo_trans_lst + [photoaug.normalize_image()])
        else:
            image_transform = photoaug.normalize_image()
        image = image_transform(image)

        # Perform the random scaling
        if scale != 1.:
            image, junctions, line_map, valid_mask = random_scaling(
                 image, junctions, line_map, scale,
                 h_crop=h_crop, w_crop=w_crop)
        else:
            # Declare default valid mask (all ones)
            valid_mask = np.ones(image_size)

        # Initialize the empty output dict
        outputs = {}
        # Convert to tensor and return the results
        to_tensor = transforms.ToTensor()

        # Check homographic augmentation
        warp = (self.config["augmentation"]["homographic"]["enable"]
                and disable_homoaug == False)
        if warp:
            homo_trans = self.get_homo_transform()
            # Perform homographic transform
            if H1 is None:
                homo_outputs = homo_trans(image, junctions, line_map,
                                            valid_mask=valid_mask)
            else:
                homo_outputs = homo_trans(
                    image, junctions, line_map, homo=H1, scale=H1_scale,
                    valid_mask=valid_mask)
            homography_mat = homo_outputs["homo"]
            
            # Give the warp of the other view
            if H1 is None:
                H1 = homo_outputs["homo"]

        # Sample points along each line segments for the descriptor
        if desc_training:
            line_points, line_indices = self.get_line_points(
                junctions, line_map, H1=H1, H2=H2,
                img_size=image_size, warp=warp)

        # Record the warped results
        if warp:
            junctions = homo_outputs["junctions"]  # Should be HW format
            image = homo_outputs["warped_image"]
            line_map = homo_outputs["line_map"]
            valid_mask = homo_outputs["valid_mask"]  # Same for pos and neg
            heatmap = homo_outputs["warped_heatmap"]
            
            # Optionally put warping information first.
            if not numpy:
                outputs["homography_mat"] = to_tensor(
                    homography_mat).to(torch.float32)[0, ...]
            else:
                outputs["homography_mat"] = homography_mat.astype(np.float32)

        junction_map = self.junc_to_junc_map(junctions, image_size)
        
        if not numpy:
            outputs.update({
                "image": to_tensor(image),
                "junctions": to_tensor(junctions).to(torch.float32)[0, ...],
                "junction_map": to_tensor(junction_map).to(torch.int),
                "line_map": to_tensor(line_map).to(torch.int32)[0, ...],
                "heatmap": to_tensor(heatmap).to(torch.int32),
                "valid_mask": to_tensor(valid_mask).to(torch.int32)
            })
            if desc_training:
                outputs.update({
                    "line_points": to_tensor(
                        line_points).to(torch.float32)[0],
                    "line_indices": torch.tensor(line_indices,
                                                 dtype=torch.int)
                })
        else:
            outputs.update({
                "image": image,
                "junctions": junctions.astype(np.float32),
                "junction_map": junction_map.astype(np.int32),
                "line_map": line_map.astype(np.int32),
                "heatmap": heatmap.astype(np.int32),
                "valid_mask": valid_mask.astype(np.int32)
            })
            if desc_training:
                outputs.update({
                    "line_points": line_points.astype(np.float32),
                    "line_indices": line_indices.astype(int)
                })
        
        return outputs
    
    def preprocessing_exported_paired_desc(self, data, numpy=False, scale=1.):
        """ Train preprocessing for paired data for the exported labels
            for descriptor training. """
        outputs = {}

        # Define the random crop for scaling if necessary
        h_crop, w_crop = 0, 0
        if scale > 1:
            H, W = self.config["preprocessing"]["resize"]
            H_scale, W_scale = round(H * scale), round(W * scale)
            if H_scale > H:
                h_crop = np.random.randint(H_scale - H)
            if W_scale > W:
                w_crop = np.random.randint(W_scale - W)
        
        # Sample ref homography first
        homo_config = self.config["augmentation"]["homographic"]["params"]
        image_shape = self.config["preprocessing"]["resize"]
        ref_H, ref_scale = homoaug.sample_homography(image_shape,
                                                     **homo_config)

        # Data for target view (All augmentation)
        target_data = self.train_preprocessing_exported(
            data, numpy=numpy, desc_training=True, H1=None, H2=ref_H,
            scale=scale, h_crop=h_crop, w_crop=w_crop)

        # Data for reference view (No homographical augmentation)
        ref_data = self.train_preprocessing_exported(
            data, numpy=numpy, desc_training=True, H1=ref_H,
            H1_scale=ref_scale, H2=target_data['homography_mat'].numpy(),
            scale=scale, h_crop=h_crop, w_crop=w_crop)

        # Spread ref data
        for key, val in ref_data.items():
            outputs["ref_" + key] = val
        
        # Spread target data
        for key, val in target_data.items():
            outputs["target_" + key] = val
        
        return outputs

    def test_preprocessing_exported(self, data, numpy=False):
        """ Test preprocessing for the exported labels. """
        data = copy.deepcopy(data)
        # Fetch the corresponding entries
        image = data["image"]
        junctions = data["junctions"]
        line_map = data["line_map"]      
        image_size = image.shape[:2]

        # Resize the image before photometric and homographical augmentations
        if not(list(image_size) == self.config["preprocessing"]["resize"]):
            # Resize the image and the point location.
            size_old = list(image.shape)[:2] # Only H and W dimensions

            image = cv2.resize(
                image, tuple(self.config['preprocessing']['resize'][::-1]),
                interpolation=cv2.INTER_LINEAR)
            image = np.array(image, dtype=np.uint8)

            # # In HW format
            # junctions = (junctions * np.array(
            #     self.config['preprocessing']['resize'], np.float)
            #              / np.array(size_old, np.float))

        # Optionally convert the image to grayscale
        if self.config["gray_scale"]:
            image = (color.rgb2gray(image) * 255.).astype(np.uint8)

        # Still need to normalize image
        image_transform = photoaug.normalize_image()
        image = image_transform(image)

        # Generate the line heatmap after post-processing
        junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
        image_size = image.shape[:2]
        heatmap = get_line_heatmap(junctions_xy, line_map, image_size)
        
        # Declare default valid mask (all ones)
        valid_mask = np.ones(image_size)

        junction_map = self.junc_to_junc_map(junctions, image_size)

        # Convert to tensor and return the results
        to_tensor = transforms.ToTensor()
        if not numpy:
            outputs = {
                "image": to_tensor(image),
                "junctions": to_tensor(junctions).to(torch.float32)[0, ...],
                "junction_map": to_tensor(junction_map).to(torch.int),
                "line_map": to_tensor(line_map).to(torch.int32)[0, ...],
                "heatmap": to_tensor(heatmap).to(torch.int32),
                "valid_mask": to_tensor(valid_mask).to(torch.int32)
            }
        else:
            outputs = {
                "image": image,
                "junctions": junctions.astype(np.float32),
                "junction_map": junction_map.astype(np.int32),
                "line_map": line_map.astype(np.int32),
                "heatmap": heatmap.astype(np.int32),
                "valid_mask": valid_mask.astype(np.int32)
            }
        
        return outputs

    def __len__(self):
        return self.dataset_length
    
    def get_data_from_key(self, file_key):
        """ Get data from file_key. """
        # Check key exists
        if not file_key in self.filename_dataset.keys():
            raise ValueError(
        "[Error] the specified key is not in the dataset.")
        
        # Get the data paths
        data_path = self.filename_dataset[file_key]
        # Read in the image and npz labels
        data = self.get_data_from_path(data_path)

        # Perform transform and augmentation
        if (self.mode == "train"
            or self.config["add_augmentation_to_all_splits"]):
            data = self.train_preprocessing(data, numpy=True)
        else:
            data = self.test_preprocessing(data, numpy=True)
        
        # Add file key to the output
        data["file_key"] = file_key
        
        return data
    
    def __getitem__(self, idx):
        """Return data
        file_key: str, keys used to retrieve data from the filename dataset.
        image: torch.float, C*H*W range 0~1,
        junctions: torch.float, N*2,
        junction_map: torch.int32, 1*H*W range 0 or 1,
        line_map: torch.int32, N*N range 0 or 1,
        heatmap: torch.int32, 1*H*W range 0 or 1,
        valid_mask: torch.int32, 1*H*W range 0 or 1
        """
        # Get the corresponding datapoint and contents from filename dataset
        file_key = self.datapoints[idx]
        data_path = self.filename_dataset[file_key]
        # Read in the image and npz labels
        data = self.get_data_from_path(data_path)

        if self.gt_source:
            with h5py.File(self.gt_source, "r") as f:
                exported_label = parse_h5_data(f[file_key])
            
            data["junctions"] = exported_label["junctions"]
            data["line_map"] = exported_label["line_map"]
        
        # Perform transform and augmentation
        return_type = self.config.get("return_type", "single")
        if self.gt_source is None:
            # For export only
            data = self.export_preprocessing(data)
        elif (self.mode == "train"
              or self.config["add_augmentation_to_all_splits"]):
            # Perform random scaling first
            if self.config["augmentation"]["random_scaling"]["enable"]:
                scale_range = self.config["augmentation"]["random_scaling"]["range"]
                # Decide the scaling
                scale = np.random.uniform(min(scale_range), max(scale_range))
            else:
                scale = 1.
            if self.mode == "train" and return_type == "paired_desc":
                data = self.preprocessing_exported_paired_desc(data,
                                                               scale=scale)
            else:
                data = self.train_preprocessing_exported(data, scale=scale)
        else:
            if return_type == "paired_desc":
                data = self.preprocessing_exported_paired_desc(data)
            else:
                data = self.test_preprocessing_exported(data)
        
        # Add file key to the output
        data["file_key"] = file_key
        
        return data