File size: 42,273 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 |
"""
This file implements the wireframe dataset object for pytorch.
Some parts of the code are adapted from https://github.com/zhou13/lcnn
"""
import os
import math
import copy
from skimage.io import imread
from skimage import color
import PIL
import numpy as np
import h5py
import cv2
import pickle
import torch
import torch.utils.data.dataloader as torch_loader
from torch.utils.data import Dataset
from torchvision import transforms
from ..config.project_config import Config as cfg
from .transforms import photometric_transforms as photoaug
from .transforms import homographic_transforms as homoaug
from .transforms.utils import random_scaling
from .synthetic_util import get_line_heatmap
from ..misc.train_utils import parse_h5_data
from ..misc.geometry_utils import warp_points, mask_points
def wireframe_collate_fn(batch):
""" Customized collate_fn for wireframe dataset. """
batch_keys = ["image", "junction_map", "valid_mask", "heatmap",
"heatmap_pos", "heatmap_neg", "homography",
"line_points", "line_indices"]
list_keys = ["junctions", "line_map", "line_map_pos",
"line_map_neg", "file_key"]
outputs = {}
for data_key in batch[0].keys():
batch_match = sum([_ in data_key for _ in batch_keys])
list_match = sum([_ in data_key for _ in list_keys])
# print(batch_match, list_match)
if batch_match > 0 and list_match == 0:
outputs[data_key] = torch_loader.default_collate(
[b[data_key] for b in batch])
elif batch_match == 0 and list_match > 0:
outputs[data_key] = [b[data_key] for b in batch]
elif batch_match == 0 and list_match == 0:
continue
else:
raise ValueError(
"[Error] A key matches batch keys and list keys simultaneously.")
return outputs
class WireframeDataset(Dataset):
def __init__(self, mode="train", config=None):
super(WireframeDataset, self).__init__()
if not mode in ["train", "test"]:
raise ValueError(
"[Error] Unknown mode for Wireframe dataset. Only 'train' and 'test'.")
self.mode = mode
if config is None:
self.config = self.get_default_config()
else:
self.config = config
# Also get the default config
self.default_config = self.get_default_config()
# Get cache setting
self.dataset_name = self.get_dataset_name()
self.cache_name = self.get_cache_name()
self.cache_path = cfg.wireframe_cache_path
# Get the ground truth source
self.gt_source = self.config.get("gt_source_%s"%(self.mode),
"official")
if not self.gt_source == "official":
# Convert gt_source to full path
self.gt_source = os.path.join(cfg.export_dataroot, self.gt_source)
# Check the full path exists
if not os.path.exists(self.gt_source):
raise ValueError(
"[Error] The specified ground truth source does not exist.")
# Get the filename dataset
print("[Info] Initializing wireframe dataset...")
self.filename_dataset, self.datapoints = self.construct_dataset()
# Get dataset length
self.dataset_length = len(self.datapoints)
# Print some info
print("[Info] Successfully initialized dataset")
print("\t Name: wireframe")
print("\t Mode: %s" %(self.mode))
print("\t Gt: %s" %(self.config.get("gt_source_%s"%(self.mode),
"official")))
print("\t Counts: %d" %(self.dataset_length))
print("----------------------------------------")
#######################################
## Dataset construction related APIs ##
#######################################
def construct_dataset(self):
""" Construct the dataset (from scratch or from cache). """
# Check if the filename cache exists
# If cache exists, load from cache
if self._check_dataset_cache():
print("\t Found filename cache %s at %s"%(self.cache_name,
self.cache_path))
print("\t Load filename cache...")
filename_dataset, datapoints = self.get_filename_dataset_from_cache()
# If not, initialize dataset from scratch
else:
print("\t Can't find filename cache ...")
print("\t Create filename dataset from scratch...")
filename_dataset, datapoints = self.get_filename_dataset()
print("\t Create filename dataset cache...")
self.create_filename_dataset_cache(filename_dataset, datapoints)
return filename_dataset, datapoints
def create_filename_dataset_cache(self, filename_dataset, datapoints):
""" Create filename dataset cache for faster initialization. """
# Check cache path exists
if not os.path.exists(self.cache_path):
os.makedirs(self.cache_path)
cache_file_path = os.path.join(self.cache_path, self.cache_name)
data = {
"filename_dataset": filename_dataset,
"datapoints": datapoints
}
with open(cache_file_path, "wb") as f:
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
def get_filename_dataset_from_cache(self):
""" Get filename dataset from cache. """
# Load from pkl cache
cache_file_path = os.path.join(self.cache_path, self.cache_name)
with open(cache_file_path, "rb") as f:
data = pickle.load(f)
return data["filename_dataset"], data["datapoints"]
def get_filename_dataset(self):
# Get the path to the dataset
if self.mode == "train":
dataset_path = os.path.join(cfg.wireframe_dataroot, "train")
elif self.mode == "test":
dataset_path = os.path.join(cfg.wireframe_dataroot, "valid")
# Get paths to all image files
image_paths = sorted([os.path.join(dataset_path, _)
for _ in os.listdir(dataset_path)\
if os.path.splitext(_)[-1] == ".png"])
# Get the shared prefix
prefix_paths = [_.split(".png")[0] for _ in image_paths]
# Get the label paths (different procedure for different split)
if self.mode == "train":
label_paths = [_ + "_label.npz" for _ in prefix_paths]
else:
label_paths = [_ + "_label.npz" for _ in prefix_paths]
mat_paths = [p[:-2] + "_line.mat" for p in prefix_paths]
# Verify all the images and labels exist
for idx in range(len(image_paths)):
image_path = image_paths[idx]
label_path = label_paths[idx]
if (not (os.path.exists(image_path)
and os.path.exists(label_path))):
raise ValueError(
"[Error] The image and label do not exist. %s"%(image_path))
# Further verify mat paths for test split
if self.mode == "test":
mat_path = mat_paths[idx]
if not os.path.exists(mat_path):
raise ValueError(
"[Error] The mat file does not exist. %s"%(mat_path))
# Construct the filename dataset
num_pad = int(math.ceil(math.log10(len(image_paths))) + 1)
filename_dataset = {}
for idx in range(len(image_paths)):
# Get the file key
key = self.get_padded_filename(num_pad, idx)
filename_dataset[key] = {
"image": image_paths[idx],
"label": label_paths[idx]
}
# Get the datapoints
datapoints = list(sorted(filename_dataset.keys()))
return filename_dataset, datapoints
def get_dataset_name(self):
""" Get dataset name from dataset config / default config. """
if self.config["dataset_name"] is None:
dataset_name = self.default_config["dataset_name"] + "_%s" % self.mode
else:
dataset_name = self.config["dataset_name"] + "_%s" % self.mode
return dataset_name
def get_cache_name(self):
""" Get cache name from dataset config / default config. """
if self.config["dataset_name"] is None:
dataset_name = self.default_config["dataset_name"] + "_%s" % self.mode
else:
dataset_name = self.config["dataset_name"] + "_%s" % self.mode
# Compose cache name
cache_name = dataset_name + "_cache.pkl"
return cache_name
@staticmethod
def get_padded_filename(num_pad, idx):
""" Get the padded filename using adaptive padding. """
file_len = len("%d" % (idx))
filename = "0" * (num_pad - file_len) + "%d" % (idx)
return filename
def get_default_config(self):
""" Get the default configuration. """
return {
"dataset_name": "wireframe",
"add_augmentation_to_all_splits": False,
"preprocessing": {
"resize": [240, 320],
"blur_size": 11
},
"augmentation":{
"photometric":{
"enable": False
},
"homographic":{
"enable": False
},
},
}
############################################
## Pytorch and preprocessing related APIs ##
############################################
# Get data from the information from filename dataset
@staticmethod
def get_data_from_path(data_path):
output = {}
# Get image data
image_path = data_path["image"]
image = imread(image_path)
output["image"] = image
# Get the npz label
""" Data entries in the npz file
jmap: [J, H, W] Junction heat map (H and W are 4x smaller)
joff: [J, 2, H, W] Junction offset within each pixel (Not sure about offsets)
lmap: [H, W] Line heat map with anti-aliasing (H and W are 4x smaller)
junc: [Na, 3] Junction coordinates (coordinates from 0~128 => 4x smaller.)
Lpos: [M, 2] Positive lines represented with junction indices
Lneg: [M, 2] Negative lines represented with junction indices
lpos: [Np, 2, 3] Positive lines represented with junction coordinates
lneg: [Nn, 2, 3] Negative lines represented with junction coordinates
"""
label_path = data_path["label"]
label = np.load(label_path)
for key in list(label.keys()):
output[key] = label[key]
# If there's "line_mat" entry.
# TODO: How to process mat data
if data_path.get("line_mat") is not None:
raise NotImplementedError
return output
@staticmethod
def convert_line_map(lcnn_line_map, num_junctions):
""" Convert the line_pos or line_neg
(represented by two junction indexes) to our line map. """
# Initialize empty line map
line_map = np.zeros([num_junctions, num_junctions])
# Iterate through all the lines
for idx in range(lcnn_line_map.shape[0]):
index1 = lcnn_line_map[idx, 0]
index2 = lcnn_line_map[idx, 1]
line_map[index1, index2] = 1
line_map[index2, index1] = 1
return line_map
@staticmethod
def junc_to_junc_map(junctions, image_size):
""" Convert junction points to junction maps. """
junctions = np.round(junctions).astype(np.int)
# Clip the boundary by image size
junctions[:, 0] = np.clip(junctions[:, 0], 0., image_size[0]-1)
junctions[:, 1] = np.clip(junctions[:, 1], 0., image_size[1]-1)
# Create junction map
junc_map = np.zeros([image_size[0], image_size[1]])
junc_map[junctions[:, 0], junctions[:, 1]] = 1
return junc_map[..., None].astype(np.int)
def parse_transforms(self, names, all_transforms):
""" Parse the transform. """
trans = all_transforms if (names == 'all') \
else (names if isinstance(names, list) else [names])
assert set(trans) <= set(all_transforms)
return trans
def get_photo_transform(self):
""" Get list of photometric transforms (according to the config). """
# Get the photometric transform config
photo_config = self.config["augmentation"]["photometric"]
if not photo_config["enable"]:
raise ValueError(
"[Error] Photometric augmentation is not enabled.")
# Parse photometric transforms
trans_lst = self.parse_transforms(photo_config["primitives"],
photoaug.available_augmentations)
trans_config_lst = [photo_config["params"].get(p, {})
for p in trans_lst]
# List of photometric augmentation
photometric_trans_lst = [
getattr(photoaug, trans)(**conf) \
for (trans, conf) in zip(trans_lst, trans_config_lst)
]
return photometric_trans_lst
def get_homo_transform(self):
""" Get homographic transforms (according to the config). """
# Get homographic transforms for image
homo_config = self.config["augmentation"]["homographic"]["params"]
if not self.config["augmentation"]["homographic"]["enable"]:
raise ValueError(
"[Error] Homographic augmentation is not enabled.")
# Parse the homographic transforms
image_shape = self.config["preprocessing"]["resize"]
# Compute the min_label_len from config
try:
min_label_tmp = self.config["generation"]["min_label_len"]
except:
min_label_tmp = None
# float label len => fraction
if isinstance(min_label_tmp, float): # Skip if not provided
min_label_len = min_label_tmp * min(image_shape)
# int label len => length in pixel
elif isinstance(min_label_tmp, int):
scale_ratio = (self.config["preprocessing"]["resize"]
/ self.config["generation"]["image_size"][0])
min_label_len = (self.config["generation"]["min_label_len"]
* scale_ratio)
# if none => no restriction
else:
min_label_len = 0
# Initialize the transform
homographic_trans = homoaug.homography_transform(
image_shape, homo_config, 0, min_label_len)
return homographic_trans
def get_line_points(self, junctions, line_map, H1=None, H2=None,
img_size=None, warp=False):
""" Sample evenly points along each line segments
and keep track of line idx. """
if np.sum(line_map) == 0:
# No segment detected in the image
line_indices = np.zeros(self.config["max_pts"], dtype=int)
line_points = np.zeros((self.config["max_pts"], 2), dtype=float)
return line_points, line_indices
# Extract all pairs of connected junctions
junc_indices = np.array(
[[i, j] for (i, j) in zip(*np.where(line_map)) if j > i])
line_segments = np.stack([junctions[junc_indices[:, 0]],
junctions[junc_indices[:, 1]]], axis=1)
# line_segments is (num_lines, 2, 2)
line_lengths = np.linalg.norm(
line_segments[:, 0] - line_segments[:, 1], axis=1)
# Sample the points separated by at least min_dist_pts along each line
# The number of samples depends on the length of the line
num_samples = np.minimum(line_lengths // self.config["min_dist_pts"],
self.config["max_num_samples"])
line_points = []
line_indices = []
cur_line_idx = 1
for n in np.arange(2, self.config["max_num_samples"] + 1):
# Consider all lines where we can fit up to n points
cur_line_seg = line_segments[num_samples == n]
line_points_x = np.linspace(cur_line_seg[:, 0, 0],
cur_line_seg[:, 1, 0],
n, axis=-1).flatten()
line_points_y = np.linspace(cur_line_seg[:, 0, 1],
cur_line_seg[:, 1, 1],
n, axis=-1).flatten()
jitter = self.config.get("jittering", 0)
if jitter:
# Add a small random jittering of all points along the line
angles = np.arctan2(
cur_line_seg[:, 1, 0] - cur_line_seg[:, 0, 0],
cur_line_seg[:, 1, 1] - cur_line_seg[:, 0, 1]).repeat(n)
jitter_hyp = (np.random.rand(len(angles)) * 2 - 1) * jitter
line_points_x += jitter_hyp * np.sin(angles)
line_points_y += jitter_hyp * np.cos(angles)
line_points.append(np.stack([line_points_x, line_points_y], axis=-1))
# Keep track of the line indices for each sampled point
num_cur_lines = len(cur_line_seg)
line_idx = np.arange(cur_line_idx, cur_line_idx + num_cur_lines)
line_indices.append(line_idx.repeat(n))
cur_line_idx += num_cur_lines
line_points = np.concatenate(line_points,
axis=0)[:self.config["max_pts"]]
line_indices = np.concatenate(line_indices,
axis=0)[:self.config["max_pts"]]
# Warp the points if need be, and filter unvalid ones
# If the other view is also warped
if warp and H2 is not None:
warp_points2 = warp_points(line_points, H2)
line_points = warp_points(line_points, H1)
mask = mask_points(line_points, img_size)
mask2 = mask_points(warp_points2, img_size)
mask = mask * mask2
# If the other view is not warped
elif warp and H2 is None:
line_points = warp_points(line_points, H1)
mask = mask_points(line_points, img_size)
else:
if H1 is not None:
raise ValueError("[Error] Wrong combination of homographies.")
# Remove points that would be outside of img_size if warped by H
warped_points = warp_points(line_points, H1)
mask = mask_points(warped_points, img_size)
line_points = line_points[mask]
line_indices = line_indices[mask]
# Pad the line points to a fixed length
# Index of 0 means padded line
line_indices = np.concatenate([line_indices, np.zeros(
self.config["max_pts"] - len(line_indices))], axis=0)
line_points = np.concatenate(
[line_points,
np.zeros((self.config["max_pts"] - len(line_points), 2),
dtype=float)], axis=0)
return line_points, line_indices
def train_preprocessing(self, data, numpy=False):
""" Train preprocessing for GT data. """
# Fetch the corresponding entries
image = data["image"]
junctions = data["junc"][:, :2]
line_pos = data["Lpos"]
line_neg = data["Lneg"]
image_size = image.shape[:2]
# Convert junctions to pixel coordinates (from 128x128)
junctions[:, 0] *= image_size[0] / 128
junctions[:, 1] *= image_size[1] / 128
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# In HW format
junctions = (junctions * np.array(
self.config['preprocessing']['resize'], np.float)
/ np.array(size_old, np.float))
# Convert to positive line map and negative line map (our format)
num_junctions = junctions.shape[0]
line_map_pos = self.convert_line_map(line_pos, num_junctions)
line_map_neg = self.convert_line_map(line_neg, num_junctions)
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
# Update image size
image_size = image.shape[:2]
heatmap_pos = get_line_heatmap(junctions_xy, line_map_pos, image_size)
heatmap_neg = get_line_heatmap(junctions_xy, line_map_neg, image_size)
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
# Check if we need to apply augmentations
# In training mode => yes.
# In homography adaptation mode (export mode) => No
if self.config["augmentation"]["photometric"]["enable"]:
photo_trans_lst = self.get_photo_transform()
### Image transform ###
np.random.shuffle(photo_trans_lst)
image_transform = transforms.Compose(
photo_trans_lst + [photoaug.normalize_image()])
else:
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Check homographic augmentation
if self.config["augmentation"]["homographic"]["enable"]:
homo_trans = self.get_homo_transform()
# Perform homographic transform
outputs_pos = homo_trans(image, junctions, line_map_pos)
outputs_neg = homo_trans(image, junctions, line_map_neg)
# record the warped results
junctions = outputs_pos["junctions"] # Should be HW format
image = outputs_pos["warped_image"]
line_map_pos = outputs_pos["line_map"]
line_map_neg = outputs_neg["line_map"]
heatmap_pos = outputs_pos["warped_heatmap"]
heatmap_neg = outputs_neg["warped_heatmap"]
valid_mask = outputs_pos["valid_mask"] # Same for pos and neg
junction_map = self.junc_to_junc_map(junctions, image_size)
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
if not numpy:
return {
"image": to_tensor(image),
"junctions": to_tensor(junctions).to(torch.float32)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map_pos": to_tensor(
line_map_pos).to(torch.int32)[0, ...],
"line_map_neg": to_tensor(
line_map_neg).to(torch.int32)[0, ...],
"heatmap_pos": to_tensor(heatmap_pos).to(torch.int32),
"heatmap_neg": to_tensor(heatmap_neg).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
}
else:
return {
"image": image,
"junctions": junctions.astype(np.float32),
"junction_map": junction_map.astype(np.int32),
"line_map_pos": line_map_pos.astype(np.int32),
"line_map_neg": line_map_neg.astype(np.int32),
"heatmap_pos": heatmap_pos.astype(np.int32),
"heatmap_neg": heatmap_neg.astype(np.int32),
"valid_mask": valid_mask.astype(np.int32)
}
def train_preprocessing_exported(
self, data, numpy=False, disable_homoaug=False,
desc_training=False, H1=None, H1_scale=None, H2=None, scale=1.,
h_crop=None, w_crop=None):
""" Train preprocessing for the exported labels. """
data = copy.deepcopy(data)
# Fetch the corresponding entries
image = data["image"]
junctions = data["junctions"]
line_map = data["line_map"]
image_size = image.shape[:2]
# Define the random crop for scaling if necessary
if h_crop is None or w_crop is None:
h_crop, w_crop = 0, 0
if scale > 1:
H, W = self.config["preprocessing"]["resize"]
H_scale, W_scale = round(H * scale), round(W * scale)
if H_scale > H:
h_crop = np.random.randint(H_scale - H)
if W_scale > W:
w_crop = np.random.randint(W_scale - W)
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# # In HW format
# junctions = (junctions * np.array(
# self.config['preprocessing']['resize'], np.float)
# / np.array(size_old, np.float))
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
image_size = image.shape[:2]
heatmap = get_line_heatmap(junctions_xy, line_map, image_size)
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
# Check if we need to apply augmentations
# In training mode => yes.
# In homography adaptation mode (export mode) => No
if self.config["augmentation"]["photometric"]["enable"]:
photo_trans_lst = self.get_photo_transform()
### Image transform ###
np.random.shuffle(photo_trans_lst)
image_transform = transforms.Compose(
photo_trans_lst + [photoaug.normalize_image()])
else:
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Perform the random scaling
if scale != 1.:
image, junctions, line_map, valid_mask = random_scaling(
image, junctions, line_map, scale,
h_crop=h_crop, w_crop=w_crop)
else:
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
# Initialize the empty output dict
outputs = {}
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
# Check homographic augmentation
warp = (self.config["augmentation"]["homographic"]["enable"]
and disable_homoaug == False)
if warp:
homo_trans = self.get_homo_transform()
# Perform homographic transform
if H1 is None:
homo_outputs = homo_trans(
image, junctions, line_map, valid_mask=valid_mask)
else:
homo_outputs = homo_trans(
image, junctions, line_map, homo=H1, scale=H1_scale,
valid_mask=valid_mask)
homography_mat = homo_outputs["homo"]
# Give the warp of the other view
if H1 is None:
H1 = homo_outputs["homo"]
# Sample points along each line segments for the descriptor
if desc_training:
line_points, line_indices = self.get_line_points(
junctions, line_map, H1=H1, H2=H2,
img_size=image_size, warp=warp)
# Record the warped results
if warp:
junctions = homo_outputs["junctions"] # Should be HW format
image = homo_outputs["warped_image"]
line_map = homo_outputs["line_map"]
valid_mask = homo_outputs["valid_mask"] # Same for pos and neg
heatmap = homo_outputs["warped_heatmap"]
# Optionally put warping information first.
if not numpy:
outputs["homography_mat"] = to_tensor(
homography_mat).to(torch.float32)[0, ...]
else:
outputs["homography_mat"] = homography_mat.astype(np.float32)
junction_map = self.junc_to_junc_map(junctions, image_size)
if not numpy:
outputs.update({
"image": to_tensor(image).to(torch.float32),
"junctions": to_tensor(junctions).to(torch.float32)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map": to_tensor(line_map).to(torch.int32)[0, ...],
"heatmap": to_tensor(heatmap).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
})
if desc_training:
outputs.update({
"line_points": to_tensor(
line_points).to(torch.float32)[0],
"line_indices": torch.tensor(line_indices,
dtype=torch.int)
})
else:
outputs.update({
"image": image,
"junctions": junctions.astype(np.float32),
"junction_map": junction_map.astype(np.int32),
"line_map": line_map.astype(np.int32),
"heatmap": heatmap.astype(np.int32),
"valid_mask": valid_mask.astype(np.int32)
})
if desc_training:
outputs.update({
"line_points": line_points.astype(np.float32),
"line_indices": line_indices.astype(int)
})
return outputs
def preprocessing_exported_paired_desc(self, data, numpy=False, scale=1.):
""" Train preprocessing for paired data for the exported labels
for descriptor training. """
outputs = {}
# Define the random crop for scaling if necessary
h_crop, w_crop = 0, 0
if scale > 1:
H, W = self.config["preprocessing"]["resize"]
H_scale, W_scale = round(H * scale), round(W * scale)
if H_scale > H:
h_crop = np.random.randint(H_scale - H)
if W_scale > W:
w_crop = np.random.randint(W_scale - W)
# Sample ref homography first
homo_config = self.config["augmentation"]["homographic"]["params"]
image_shape = self.config["preprocessing"]["resize"]
ref_H, ref_scale = homoaug.sample_homography(image_shape,
**homo_config)
# Data for target view (All augmentation)
target_data = self.train_preprocessing_exported(
data, numpy=numpy, desc_training=True, H1=None, H2=ref_H,
scale=scale, h_crop=h_crop, w_crop=w_crop)
# Data for reference view (No homographical augmentation)
ref_data = self.train_preprocessing_exported(
data, numpy=numpy, desc_training=True, H1=ref_H,
H1_scale=ref_scale, H2=target_data["homography_mat"].numpy(),
scale=scale, h_crop=h_crop, w_crop=w_crop)
# Spread ref data
for key, val in ref_data.items():
outputs["ref_" + key] = val
# Spread target data
for key, val in target_data.items():
outputs["target_" + key] = val
return outputs
def test_preprocessing(self, data, numpy=False):
""" Test preprocessing for GT data. """
data = copy.deepcopy(data)
# Fetch the corresponding entries
image = data["image"]
junctions = data["junc"][:, :2]
line_pos = data["Lpos"]
line_neg = data["Lneg"]
image_size = image.shape[:2]
# Convert junctions to pixel coordinates (from 128x128)
junctions[:, 0] *= image_size[0] / 128
junctions[:, 1] *= image_size[1] / 128
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# In HW format
junctions = (junctions * np.array(
self.config['preprocessing']['resize'], np.float)
/ np.array(size_old, np.float))
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
# Still need to normalize image
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Convert to positive line map and negative line map (our format)
num_junctions = junctions.shape[0]
line_map_pos = self.convert_line_map(line_pos, num_junctions)
line_map_neg = self.convert_line_map(line_neg, num_junctions)
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
# Update image size
image_size = image.shape[:2]
heatmap_pos = get_line_heatmap(junctions_xy, line_map_pos, image_size)
heatmap_neg = get_line_heatmap(junctions_xy, line_map_neg, image_size)
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
junction_map = self.junc_to_junc_map(junctions, image_size)
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
if not numpy:
return {
"image": to_tensor(image),
"junctions": to_tensor(junctions).to(torch.float32)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map_pos": to_tensor(
line_map_pos).to(torch.int32)[0, ...],
"line_map_neg": to_tensor(
line_map_neg).to(torch.int32)[0, ...],
"heatmap_pos": to_tensor(heatmap_pos).to(torch.int32),
"heatmap_neg": to_tensor(heatmap_neg).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
}
else:
return {
"image": image,
"junctions": junctions.astype(np.float32),
"junction_map": junction_map.astype(np.int32),
"line_map_pos": line_map_pos.astype(np.int32),
"line_map_neg": line_map_neg.astype(np.int32),
"heatmap_pos": heatmap_pos.astype(np.int32),
"heatmap_neg": heatmap_neg.astype(np.int32),
"valid_mask": valid_mask.astype(np.int32)
}
def test_preprocessing_exported(self, data, numpy=False, scale=1.):
""" Test preprocessing for the exported labels. """
data = copy.deepcopy(data)
# Fetch the corresponding entries
image = data["image"]
junctions = data["junctions"]
line_map = data["line_map"]
image_size = image.shape[:2]
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(
image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# # In HW format
# junctions = (junctions * np.array(
# self.config['preprocessing']['resize'], np.float)
# / np.array(size_old, np.float))
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) * 255.).astype(np.uint8)
# Still need to normalize image
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Generate the line heatmap after post-processing
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1)
image_size = image.shape[:2]
heatmap = get_line_heatmap(junctions_xy, line_map, image_size)
# Declare default valid mask (all ones)
valid_mask = np.ones(image_size)
junction_map = self.junc_to_junc_map(junctions, image_size)
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
if not numpy:
outputs = {
"image": to_tensor(image),
"junctions": to_tensor(junctions).to(torch.float32)[0, ...],
"junction_map": to_tensor(junction_map).to(torch.int),
"line_map": to_tensor(line_map).to(torch.int32)[0, ...],
"heatmap": to_tensor(heatmap).to(torch.int32),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
}
else:
outputs = {
"image": image,
"junctions": junctions.astype(np.float32),
"junction_map": junction_map.astype(np.int32),
"line_map": line_map.astype(np.int32),
"heatmap": heatmap.astype(np.int32),
"valid_mask": valid_mask.astype(np.int32)
}
return outputs
def __len__(self):
return self.dataset_length
def get_data_from_key(self, file_key):
""" Get data from file_key. """
# Check key exists
if not file_key in self.filename_dataset.keys():
raise ValueError("[Error] the specified key is not in the dataset.")
# Get the data paths
data_path = self.filename_dataset[file_key]
# Read in the image and npz labels (but haven't applied any transform)
data = self.get_data_from_path(data_path)
# Perform transform and augmentation
if self.mode == "train" or self.config["add_augmentation_to_all_splits"]:
data = self.train_preprocessing(data, numpy=True)
else:
data = self.test_preprocessing(data, numpy=True)
# Add file key to the output
data["file_key"] = file_key
return data
def __getitem__(self, idx):
"""Return data
file_key: str, keys used to retrieve data from the filename dataset.
image: torch.float, C*H*W range 0~1,
junctions: torch.float, N*2,
junction_map: torch.int32, 1*H*W range 0 or 1,
line_map_pos: torch.int32, N*N range 0 or 1,
line_map_neg: torch.int32, N*N range 0 or 1,
heatmap_pos: torch.int32, 1*H*W range 0 or 1,
heatmap_neg: torch.int32, 1*H*W range 0 or 1,
valid_mask: torch.int32, 1*H*W range 0 or 1
"""
# Get the corresponding datapoint and contents from filename dataset
file_key = self.datapoints[idx]
data_path = self.filename_dataset[file_key]
# Read in the image and npz labels (but haven't applied any transform)
data = self.get_data_from_path(data_path)
# Also load the exported labels if not using the official ground truth
if not self.gt_source == "official":
with h5py.File(self.gt_source, "r") as f:
exported_label = parse_h5_data(f[file_key])
data["junctions"] = exported_label["junctions"]
data["line_map"] = exported_label["line_map"]
# Perform transform and augmentation
return_type = self.config.get("return_type", "single")
if (self.mode == "train"
or self.config["add_augmentation_to_all_splits"]):
# Perform random scaling first
if self.config["augmentation"]["random_scaling"]["enable"]:
scale_range = self.config["augmentation"]["random_scaling"]["range"]
# Decide the scaling
scale = np.random.uniform(min(scale_range), max(scale_range))
else:
scale = 1.
if self.gt_source == "official":
data = self.train_preprocessing(data)
else:
if return_type == "paired_desc":
data = self.preprocessing_exported_paired_desc(
data, scale=scale)
else:
data = self.train_preprocessing_exported(data,
scale=scale)
else:
if self.gt_source == "official":
data = self.test_preprocessing(data)
elif return_type == "paired_desc":
data = self.preprocessing_exported_paired_desc(data)
else:
data = self.test_preprocessing_exported(data)
# Add file key to the output
data["file_key"] = file_key
return data
########################
## Some other methods ##
########################
def _check_dataset_cache(self):
""" Check if dataset cache exists. """
cache_file_path = os.path.join(self.cache_path, self.cache_name)
if os.path.exists(cache_file_path):
return True
else:
return False
|