File size: 12,456 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import bisect
import numpy as np
import matplotlib.pyplot as plt
import matplotlib, os, cv2
import matplotlib.cm as cm
from PIL import Image
import torch.nn.functional as F
import torch


def _compute_conf_thresh(data):
    dataset_name = data['dataset_name'][0].lower()
    if dataset_name == 'scannet':
        thr = 5e-4
    elif dataset_name == 'megadepth':
        thr = 1e-4
    else:
        raise ValueError(f'Unknown dataset: {dataset_name}')
    return thr


# --- VISUALIZATION --- #

def make_matching_figure(
        img0, img1, mkpts0, mkpts1, color,
        kpts0=None, kpts1=None, text=[], dpi=75, path=None):
    # draw image pair
    assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0)  # , cmap='gray')
    axes[1].imshow(img1)  # , cmap='gray')
    for i in range(2):   # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
    plt.tight_layout(pad=1)
    
    if kpts0 is not None:
        assert kpts1 is not None
        axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=5)
        axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=5)

    # draw matches
    if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
        fig.canvas.draw()
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
        fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
        fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]),
                                            (fkpts0[i, 1], fkpts1[i, 1]),
                                            transform=fig.transFigure, c=color[i], linewidth=2)
                                        for i in range(len(mkpts0))]
        
        axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
        axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)

    # put txts
    txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w'
    fig.text(
        0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
        fontsize=15, va='top', ha='left', color=txt_color)

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches='tight', pad_inches=0)
        plt.close()
    else:
        return fig


def _make_evaluation_figure(data, b_id, alpha='dynamic'):
    b_mask = data['m_bids'] == b_id
    conf_thr = _compute_conf_thresh(data)
    
    img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
    img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
    kpts0 = data['mkpts0_f'][b_mask].cpu().numpy()
    kpts1 = data['mkpts1_f'][b_mask].cpu().numpy()
    
    # for megadepth, we visualize matches on the resized image
    if 'scale0' in data:
        kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]]
        kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]]

    epi_errs = data['epi_errs'][b_mask].cpu().numpy()
    correct_mask = epi_errs < conf_thr
    precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
    n_correct = np.sum(correct_mask)
    n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu())
    recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
    # recall might be larger than 1, since the calculation of conf_matrix_gt
    # uses groundtruth depths and camera poses, but epipolar distance is used here.

    # matching info
    if alpha == 'dynamic':
        alpha = dynamic_alpha(len(correct_mask))
    color = error_colormap(epi_errs, conf_thr, alpha=alpha)
    
    text = [
        f'#Matches {len(kpts0)}',
        f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}',
        f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}'
    ]
    
    # make the figure
    figure = make_matching_figure(img0, img1, kpts0, kpts1,
                                  color, text=text)
    return figure

def _make_confidence_figure(data, b_id):
    # TODO: Implement confidence figure
    raise NotImplementedError()


def make_matching_figures(data, config, mode='evaluation'):
    """ Make matching figures for a batch.
    
    Args:
        data (Dict): a batch updated by PL_LoFTR.
        config (Dict): matcher config
    Returns:
        figures (Dict[str, List[plt.figure]]
    """
    assert mode in ['evaluation', 'confidence']  # 'confidence'
    figures = {mode: []}
    for b_id in range(data['image0'].size(0)):
        if mode == 'evaluation':
            fig = _make_evaluation_figure(
                data, b_id,
                alpha=config.TRAINER.PLOT_MATCHES_ALPHA)
        elif mode == 'confidence':
            fig = _make_confidence_figure(data, b_id)
        else:
            raise ValueError(f'Unknown plot mode: {mode}')
    figures[mode].append(fig)
    return figures


def dynamic_alpha(n_matches,
                  milestones=[0, 300, 1000, 2000],
                  alphas=[1.0, 0.8, 0.4, 0.2]):
    if n_matches == 0:
        return 1.0
    ranges = list(zip(alphas, alphas[1:] + [None]))
    loc = bisect.bisect_right(milestones, n_matches) - 1
    _range = ranges[loc]
    if _range[1] is None:
        return _range[0]
    return _range[1] + (milestones[loc + 1] - n_matches) / (
        milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1])


def error_colormap(err, thr, alpha=1.0):
    assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
    x = 1 - np.clip(err / (thr * 2), 0, 1)
    return np.clip(
        np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1)


np.random.seed(1995)
color_map = np.arange(100)
np.random.shuffle(color_map)


def draw_topics(data, img0, img1, saved_folder="viz_topics", show_n_topics=8, saved_name=None):

    topic0, topic1 = data["topic_matrix"]["img0"], data["topic_matrix"]["img1"]
    hw0_c, hw1_c = data["hw0_c"], data["hw1_c"]
    hw0_i, hw1_i = data["hw0_i"], data["hw1_i"]
    # print(hw0_i, hw1_i)
    scale0, scale1 = hw0_i[0] // hw0_c[0], hw1_i[0] // hw1_c[0]
    if "scale0" in data:
        scale0 *= data["scale0"][0]
    else:
        scale0 = (scale0, scale0)
    if "scale1" in data:
        scale1 *= data["scale1"][0]
    else:
        scale1 = (scale1, scale1)

    n_topics = topic0.shape[-1]
    # mask0_nonzero = topic0[0].sum(dim=-1, keepdim=True) > 0
    # mask1_nonzero = topic1[0].sum(dim=-1, keepdim=True) > 0
    theta0 = topic0[0].sum(dim=0)
    theta0 /= theta0.sum().float()
    theta1 = topic1[0].sum(dim=0)
    theta1 /= theta1.sum().float()
    # top_topic0 = torch.argsort(theta0, descending=True)[:show_n_topics]
    # top_topic1 = torch.argsort(theta1, descending=True)[:show_n_topics]
    top_topics = torch.argsort(theta0*theta1, descending=True)[:show_n_topics]
    # print(sum_topic0, sum_topic1)

    topic0 = topic0[0].argmax(dim=-1, keepdim=True) #.float() / (n_topics - 1) #* 255 + 1 #
    # topic0[~mask0_nonzero] = -1
    topic1 = topic1[0].argmax(dim=-1, keepdim=True) #.float() / (n_topics - 1) #* 255 + 1
    # topic1[~mask1_nonzero] = -1
    label_img0, label_img1 = torch.zeros_like(topic0) - 1, torch.zeros_like(topic1) - 1
    for i, k in enumerate(top_topics):
        label_img0[topic0 == k] = color_map[k]
        label_img1[topic1 == k] = color_map[k]

#     print(hw0_c, scale0)
#     print(hw1_c, scale1)
    # map_topic0 = F.fold(label_img0.unsqueeze(0), hw0_i, kernel_size=scale0, stride=scale0)
    map_topic0 = label_img0.float().view(hw0_c).cpu().numpy() #map_topic0.squeeze(0).squeeze(0).cpu().numpy()
    map_topic0 = cv2.resize(map_topic0, (int(hw0_c[1] * scale0[0]), int(hw0_c[0] * scale0[1])))
    # map_topic1 = F.fold(label_img1.unsqueeze(0), hw1_i, kernel_size=scale1, stride=scale1)
    map_topic1 = label_img1.float().view(hw1_c).cpu().numpy() #map_topic1.squeeze(0).squeeze(0).cpu().numpy()
    map_topic1 = cv2.resize(map_topic1, (int(hw1_c[1] * scale1[0]), int(hw1_c[0] * scale1[1])))


    # show image0
    if saved_name is None:
        return map_topic0, map_topic1

    if not os.path.exists(saved_folder):
        os.makedirs(saved_folder)
    path_saved_img0 = os.path.join(saved_folder, "{}_0.png".format(saved_name))
    plt.imshow(img0)
    masked_map_topic0 = np.ma.masked_where(map_topic0 < 0, map_topic0)
    plt.imshow(masked_map_topic0, cmap=plt.cm.jet, vmin=0, vmax=n_topics-1, alpha=.3, interpolation='bilinear')
    # plt.show()
    plt.axis('off')
    plt.savefig(path_saved_img0, bbox_inches='tight', pad_inches=0, dpi=250)
    plt.close()

    path_saved_img1 = os.path.join(saved_folder, "{}_1.png".format(saved_name))
    plt.imshow(img1)
    masked_map_topic1 = np.ma.masked_where(map_topic1 < 0, map_topic1)
    plt.imshow(masked_map_topic1, cmap=plt.cm.jet, vmin=0, vmax=n_topics-1, alpha=.3, interpolation='bilinear')
    plt.axis('off')
    plt.savefig(path_saved_img1, bbox_inches='tight', pad_inches=0, dpi=250)
    plt.close()


def draw_topicfm_demo(data, img0, img1, mkpts0, mkpts1, mcolor, text, show_n_topics=8,
                      topic_alpha=0.3, margin=5, path=None, opencv_display=False, opencv_title=''):
    topic_map0, topic_map1 = draw_topics(data, img0, img1, show_n_topics=show_n_topics)

    mask_tm0, mask_tm1 = np.expand_dims(topic_map0 >= 0, axis=-1), np.expand_dims(topic_map1 >= 0, axis=-1)

    topic_cm0, topic_cm1 = cm.jet(topic_map0 / 99.), cm.jet(topic_map1 / 99.)
    topic_cm0 = cv2.cvtColor(topic_cm0[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR)
    topic_cm1 = cv2.cvtColor(topic_cm1[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR)
    overlay0 = (mask_tm0 * topic_cm0 + (1 - mask_tm0) * img0).astype(np.float32)
    overlay1 = (mask_tm1 * topic_cm1 + (1 - mask_tm1) * img1).astype(np.float32)

    cv2.addWeighted(overlay0, topic_alpha, img0, 1 - topic_alpha, 0, overlay0)
    cv2.addWeighted(overlay1, topic_alpha, img1, 1 - topic_alpha, 0, overlay1)

    overlay0, overlay1 = (overlay0 * 255).astype(np.uint8), (overlay1 * 255).astype(np.uint8)

    h0, w0 = img0.shape[:2]
    h1, w1 = img1.shape[:2]
    h, w = h0 * 2 + margin * 2, w0 * 2 + margin
    out_fig = 255 * np.ones((h, w, 3), dtype=np.uint8)
    out_fig[:h0, :w0] = overlay0
    if h0 >= h1:
        start = (h0 - h1) // 2
        out_fig[start:(start+h1), (w0+margin):(w0+margin+w1)] = overlay1
    else:
        start = (h1 - h0) // 2
        out_fig[:h0, (w0+margin):(w0+margin+w1)] = overlay1[start:(start+h0)]

    step_h = h0 + margin * 2
    out_fig[step_h:step_h+h0, :w0] = (img0 * 255).astype(np.uint8)
    if h0 >= h1:
        start = step_h + (h0 - h1) // 2
        out_fig[start:start+h1, (w0+margin):(w0+margin+w1)] = (img1 * 255).astype(np.uint8)
    else:
        start = (h1 - h0) // 2
        out_fig[step_h:step_h+h0, (w0+margin):(w0+margin+w1)] = (img1[start:start+h0] * 255).astype(np.uint8)

    # draw matching lines, this is inspried from https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/utils.py
    mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
    mcolor = (np.array(mcolor[:, [2, 1, 0]]) * 255).astype(int)

    for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, mcolor):
        c = c.tolist()
        cv2.line(out_fig, (x0, y0+step_h), (x1+margin+w0, y1+step_h+(h0-h1)//2),
                 color=c, thickness=1, lineType=cv2.LINE_AA)
        # display line end-points as circles
        cv2.circle(out_fig, (x0, y0+step_h), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out_fig, (x1+margin+w0, y1+step_h+(h0-h1)//2), 2, c, -1, lineType=cv2.LINE_AA)

        # Scale factor for consistent visualization across scales.
    sc = min(h / 960., 2.0)

    # Big text.
    Ht = int(30 * sc)  # text height
    txt_color_fg = (255, 255, 255)
    txt_color_bg = (0, 0, 0)
    for i, t in enumerate(text):
        cv2.putText(out_fig, t, (int(8 * sc), Ht + step_h*i), cv2.FONT_HERSHEY_DUPLEX,
                    1.0 * sc, txt_color_bg, 2, cv2.LINE_AA)
        cv2.putText(out_fig, t, (int(8 * sc), Ht + step_h*i), cv2.FONT_HERSHEY_DUPLEX,
                    1.0 * sc, txt_color_fg, 1, cv2.LINE_AA)

    if path is not None:
        cv2.imwrite(str(path), out_fig)

    if opencv_display:
        cv2.imshow(opencv_title, out_fig)
        cv2.waitKey(1)

    return out_fig