File size: 12,029 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# From https://github.com/TRI-ML/KP2D.
# Copyright 2020 Toyota Research Institute. All rights reserved.
import random
from math import pi
import cv2
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from utils import image_grid
def filter_dict(dict, keywords):
"""
Returns only the keywords that are part of a dictionary
Parameters
----------
dictionary : dict
Dictionary for filtering
keywords : list of str
Keywords that will be filtered
Returns
-------
keywords : list of str
List containing the keywords that are keys in dictionary
"""
return [key for key in keywords if key in dict]
def resize_sample(sample, image_shape, image_interpolation=Image.ANTIALIAS):
"""
Resizes a sample, which contains an input image.
Parameters
----------
sample : dict
Dictionary with sample values (output from a dataset's __getitem__ method)
shape : tuple (H,W)
Output shape
image_interpolation : int
Interpolation mode
Returns
-------
sample : dict
Resized sample
"""
# image
image_transform = transforms.Resize(image_shape, interpolation=image_interpolation)
sample['image'] = image_transform(sample['image'])
return sample
def spatial_augment_sample(sample):
""" Apply spatial augmentation to an image (flipping and random affine transformation)."""
augment_image = transforms.Compose([
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomAffine(15, translate=(0.1, 0.1), scale=(0.9, 1.1))
])
sample['image'] = augment_image(sample['image'])
return sample
def unnormalize_image(tensor, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
""" Counterpart method of torchvision.transforms.Normalize."""
for t, m, s in zip(tensor, mean, std):
t.div_(1 / s).sub_(-m)
return tensor
def sample_homography(
shape, perspective=True, scaling=True, rotation=True, translation=True,
n_scales=100, n_angles=100, scaling_amplitude=0.1, perspective_amplitude=0.4,
patch_ratio=0.8, max_angle=pi/4):
""" Sample a random homography that includes perspective, scale, translation and rotation operations."""
width = float(shape[1])
hw_ratio = float(shape[0]) / float(shape[1])
pts1 = np.stack([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]], axis=0)
pts2 = pts1.copy() * patch_ratio
pts2[:,1] *= hw_ratio
if perspective:
perspective_amplitude_x = np.random.normal(0., perspective_amplitude/2, (2))
perspective_amplitude_y = np.random.normal(0., hw_ratio * perspective_amplitude/2, (2))
perspective_amplitude_x = np.clip(perspective_amplitude_x, -perspective_amplitude/2, perspective_amplitude/2)
perspective_amplitude_y = np.clip(perspective_amplitude_y, hw_ratio * -perspective_amplitude/2, hw_ratio * perspective_amplitude/2)
pts2[0,0] -= perspective_amplitude_x[1]
pts2[0,1] -= perspective_amplitude_y[1]
pts2[1,0] -= perspective_amplitude_x[0]
pts2[1,1] += perspective_amplitude_y[1]
pts2[2,0] += perspective_amplitude_x[1]
pts2[2,1] -= perspective_amplitude_y[0]
pts2[3,0] += perspective_amplitude_x[0]
pts2[3,1] += perspective_amplitude_y[0]
if scaling:
random_scales = np.random.normal(1, scaling_amplitude/2, (n_scales))
random_scales = np.clip(random_scales, 1-scaling_amplitude/2, 1+scaling_amplitude/2)
scales = np.concatenate([[1.], random_scales], 0)
center = np.mean(pts2, axis=0, keepdims=True)
scaled = np.expand_dims(pts2 - center, axis=0) * np.expand_dims(
np.expand_dims(scales, 1), 1) + center
valid = np.arange(n_scales) # all scales are valid except scale=1
idx = valid[np.random.randint(valid.shape[0])]
pts2 = scaled[idx]
if translation:
t_min, t_max = np.min(pts2 - [-1., -hw_ratio], axis=0), np.min([1., hw_ratio] - pts2, axis=0)
pts2 += np.expand_dims(np.stack([np.random.uniform(-t_min[0], t_max[0]),
np.random.uniform(-t_min[1], t_max[1])]),
axis=0)
if rotation:
angles = np.linspace(-max_angle, max_angle, n_angles)
angles = np.concatenate([[0.], angles], axis=0)
center = np.mean(pts2, axis=0, keepdims=True)
rot_mat = np.reshape(np.stack([np.cos(angles), -np.sin(angles), np.sin(angles),
np.cos(angles)], axis=1), [-1, 2, 2])
rotated = np.matmul(
np.tile(np.expand_dims(pts2 - center, axis=0), [n_angles+1, 1, 1]),
rot_mat) + center
valid = np.where(np.all((rotated >= [-1.,-hw_ratio]) & (rotated < [1.,hw_ratio]),
axis=(1, 2)))[0]
idx = valid[np.random.randint(valid.shape[0])]
pts2 = rotated[idx]
pts2[:,1] /= hw_ratio
def ax(p, q): return [p[0], p[1], 1, 0, 0, 0, -p[0] * q[0], -p[1] * q[0]]
def ay(p, q): return [0, 0, 0, p[0], p[1], 1, -p[0] * q[1], -p[1] * q[1]]
a_mat = np.stack([f(pts1[i], pts2[i]) for i in range(4) for f in (ax, ay)], axis=0)
p_mat = np.transpose(np.stack(
[[pts2[i][j] for i in range(4) for j in range(2)]], axis=0))
homography = np.matmul(np.linalg.pinv(a_mat), p_mat).squeeze()
homography = np.concatenate([homography, [1.]]).reshape(3,3)
return homography
def warp_homography(sources, homography):
"""Warp features given a homography
Parameters
----------
sources: torch.tensor (1,H,W,2)
Keypoint vector.
homography: torch.Tensor (3,3)
Homography.
Returns
-------
warped_sources: torch.tensor (1,H,W,2)
Warped feature vector.
"""
_, H, W, _ = sources.shape
warped_sources = sources.clone().squeeze()
warped_sources = warped_sources.view(-1,2)
warped_sources = torch.addmm(homography[:,2], warped_sources, homography[:,:2].t())
warped_sources.mul_(1/warped_sources[:,2].unsqueeze(1))
warped_sources = warped_sources[:,:2].contiguous().view(1,H,W,2)
return warped_sources
def add_noise(img, mode="gaussian", percent=0.02):
"""Add image noise
Parameters
----------
image : np.array
Input image
mode: str
Type of noise, from ['gaussian','salt','pepper','s&p']
percent: float
Percentage image points to add noise to.
Returns
-------
image : np.array
Image plus noise.
"""
original_dtype = img.dtype
if mode == "gaussian":
mean = 0
var = 0.1
sigma = var * 0.5
if img.ndim == 2:
h, w = img.shape
gauss = np.random.normal(mean, sigma, (h, w))
else:
h, w, c = img.shape
gauss = np.random.normal(mean, sigma, (h, w, c))
if img.dtype not in [np.float32, np.float64]:
gauss = gauss * np.iinfo(img.dtype).max
img = np.clip(img.astype(np.float) + gauss, 0, np.iinfo(img.dtype).max)
else:
img = np.clip(img.astype(np.float) + gauss, 0, 1)
elif mode == "salt":
print(img.dtype)
s_vs_p = 1
num_salt = np.ceil(percent * img.size * s_vs_p)
coords = tuple([np.random.randint(0, i - 1, int(num_salt)) for i in img.shape])
if img.dtype in [np.float32, np.float64]:
img[coords] = 1
else:
img[coords] = np.iinfo(img.dtype).max
print(img.dtype)
elif mode == "pepper":
s_vs_p = 0
num_pepper = np.ceil(percent * img.size * (1.0 - s_vs_p))
coords = tuple(
[np.random.randint(0, i - 1, int(num_pepper)) for i in img.shape]
)
img[coords] = 0
elif mode == "s&p":
s_vs_p = 0.5
# Salt mode
num_salt = np.ceil(percent * img.size * s_vs_p)
coords = tuple([np.random.randint(0, i - 1, int(num_salt)) for i in img.shape])
if img.dtype in [np.float32, np.float64]:
img[coords] = 1
else:
img[coords] = np.iinfo(img.dtype).max
# Pepper mode
num_pepper = np.ceil(percent * img.size * (1.0 - s_vs_p))
coords = tuple(
[np.random.randint(0, i - 1, int(num_pepper)) for i in img.shape]
)
img[coords] = 0
else:
raise ValueError("not support mode for {}".format(mode))
noisy = img.astype(original_dtype)
return noisy
def non_spatial_augmentation(img_warp_ori, jitter_paramters, color_order=[0,1,2], to_gray=False):
""" Apply non-spatial augmentation to an image (jittering, color swap, convert to gray scale, Gaussian blur)."""
brightness, contrast, saturation, hue = jitter_paramters
color_augmentation = transforms.ColorJitter(brightness, contrast, saturation, hue)
'''
augment_image = color_augmentation.get_params(brightness=[max(0, 1 - brightness), 1 + brightness],
contrast=[max(0, 1 - contrast), 1 + contrast],
saturation=[max(0, 1 - saturation), 1 + saturation],
hue=[-hue, hue])
'''
B = img_warp_ori.shape[0]
img_warp = []
kernel_sizes = [0,1,3,5]
for b in range(B):
img_warp_sub = img_warp_ori[b].cpu()
img_warp_sub = torchvision.transforms.functional.to_pil_image(img_warp_sub)
img_warp_sub_np = np.array(img_warp_sub)
img_warp_sub_np = img_warp_sub_np[:,:,color_order]
if np.random.rand() > 0.5:
img_warp_sub_np = add_noise(img_warp_sub_np)
rand_index = np.random.randint(4)
kernel_size = kernel_sizes[rand_index]
if kernel_size >0:
img_warp_sub_np = cv2.GaussianBlur(img_warp_sub_np, (kernel_size, kernel_size), sigmaX=0)
if to_gray:
img_warp_sub_np = cv2.cvtColor(img_warp_sub_np, cv2.COLOR_RGB2GRAY)
img_warp_sub_np = cv2.cvtColor(img_warp_sub_np, cv2.COLOR_GRAY2RGB)
img_warp_sub = Image.fromarray(img_warp_sub_np)
img_warp_sub = color_augmentation(img_warp_sub)
img_warp_sub = torchvision.transforms.functional.to_tensor(img_warp_sub).to(img_warp_ori.device)
img_warp.append(img_warp_sub)
img_warp = torch.stack(img_warp, dim=0)
return img_warp
def ha_augment_sample(data, jitter_paramters=[0.5, 0.5, 0.2, 0.05], patch_ratio=0.7, scaling_amplitude=0.2, max_angle=pi/4):
"""Apply Homography Adaptation image augmentation."""
input_img = data['image'].unsqueeze(0)
_, _, H, W = input_img.shape
device = input_img.device
homography = torch.from_numpy(
sample_homography([H, W],
patch_ratio=patch_ratio,
scaling_amplitude=scaling_amplitude,
max_angle=max_angle)).float().to(device)
homography_inv = torch.inverse(homography)
source = image_grid(1, H, W,
dtype=input_img.dtype,
device=device,
ones=False, normalized=True).clone().permute(0, 2, 3, 1)
target_warped = warp_homography(source, homography)
img_warp = torch.nn.functional.grid_sample(input_img, target_warped)
color_order = [0,1,2]
if np.random.rand() > 0.5:
random.shuffle(color_order)
to_gray = False
if np.random.rand() > 0.5:
to_gray = True
input_img = non_spatial_augmentation(input_img, jitter_paramters=jitter_paramters, color_order=color_order, to_gray=to_gray)
img_warp = non_spatial_augmentation(img_warp, jitter_paramters=jitter_paramters, color_order=color_order, to_gray=to_gray)
data['image'] = input_img.squeeze()
data['image_aug'] = img_warp.squeeze()
data['homography'] = homography
data['homography_inv'] = homography_inv
return data
|