File size: 10,058 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use

import os, pdb
import numpy as np
from PIL import Image

from .dataset import Dataset, CatDataset
from tools.transforms import instanciate_transformation
from tools.transforms_tools import persp_apply


class PairDataset (Dataset):
    """ A dataset that serves image pairs with ground-truth pixel correspondences.
    """
    def __init__(self):
        Dataset.__init__(self)
        self.npairs = 0

    def get_filename(self, img_idx, root=None):
        if is_pair(img_idx): # if img_idx is a pair of indices, we return a pair of filenames
            return tuple(Dataset.get_filename(self, i, root) for i in img_idx)
        return Dataset.get_filename(self, img_idx, root)

    def get_image(self, img_idx):
        if is_pair(img_idx): # if img_idx is a pair of indices, we return a pair of images
            return tuple(Dataset.get_image(self, i) for i in img_idx)
        return Dataset.get_image(self, img_idx)

    def get_corres_filename(self, pair_idx):
        raise NotImplementedError()

    def get_homography_filename(self, pair_idx):
        raise NotImplementedError()

    def get_flow_filename(self, pair_idx):
        raise NotImplementedError()

    def get_mask_filename(self, pair_idx):
        raise NotImplementedError()

    def get_pair(self, idx, output=()):
        """ returns (img1, img2, `metadata`)
        
        `metadata` is a dict() that can contain:
            flow: optical flow
            aflow: absolute flow
            corres: list of 2d-2d correspondences
            mask: boolean image of flow validity (in the first image)
            ...
        """
        raise NotImplementedError()

    def get_paired_images(self):
        fns = set()
        for i in range(self.npairs):
            a,b = self.image_pairs[i]
            fns.add(self.get_filename(a))
            fns.add(self.get_filename(b))
        return fns

    def __len__(self):
        return self.npairs # size should correspond to the number of pairs, not images
    
    def __repr__(self):
        res =  'Dataset: %s\n' % self.__class__.__name__
        res += '  %d images,' % self.nimg
        res += ' %d image pairs' % self.npairs
        res += '\n  root: %s...\n' % self.root
        return res

    @staticmethod
    def _flow2png(flow, path):
        flow = np.clip(np.around(16*flow), -2**15, 2**15-1)
        bytes = np.int16(flow).view(np.uint8)
        Image.fromarray(bytes).save(path)
        return flow / 16

    @staticmethod
    def _png2flow(path):
        try:
            flow = np.asarray(Image.open(path)).view(np.int16)
            return np.float32(flow) / 16
        except:
            raise IOError("Error loading flow for %s" % path)



class StillPairDataset (PairDataset):
    """ A dataset of 'still' image pairs.
        By overloading a normal image dataset, it appends the get_pair(i) function
        that serves trivial image pairs (img1, img2) where img1 == img2 == get_image(i).
    """
    def get_pair(self, pair_idx, output=()):
        if isinstance(output, str): output = output.split()
        img1, img2 = map(self.get_image, self.image_pairs[pair_idx])

        W,H = img1.size
        sx = img2.size[0] / float(W)
        sy = img2.size[1] / float(H)

        meta = {}
        if 'aflow' in output or 'flow' in output:
            mgrid = np.mgrid[0:H, 0:W][::-1].transpose(1,2,0).astype(np.float32)
            meta['aflow'] = mgrid * (sx,sy)
            meta['flow'] = meta['aflow'] - mgrid

        if 'mask' in output:
            meta['mask'] = np.ones((H,W), np.uint8)

        if 'homography' in output:
            meta['homography'] = np.diag(np.float32([sx, sy, 1]))

        return img1, img2, meta



class SyntheticPairDataset (PairDataset):
    """ A synthetic generator of image pairs.
        Given a normal image dataset, it constructs pairs using random homographies & noise.
    """
    def __init__(self, dataset, scale='', distort=''):
        self.attach_dataset(dataset)
        self.distort = instanciate_transformation(distort)
        self.scale = instanciate_transformation(scale)

    def attach_dataset(self, dataset):
        assert isinstance(dataset, Dataset) and not isinstance(dataset, PairDataset)
        self.dataset = dataset
        self.npairs = dataset.nimg
        self.get_image = dataset.get_image
        self.get_key = dataset.get_key
        self.get_filename = dataset.get_filename
        self.root = None
        
    def make_pair(self, img):
        return img, img

    def get_pair(self, i, output=('aflow')):
        """ Procedure:
        This function applies a series of random transformations to one original image 
        to form a synthetic image pairs with perfect ground-truth.
        """
        if isinstance(output, str): 
            output = output.split()
            
        original_img = self.dataset.get_image(i)
        
        scaled_image = self.scale(original_img)
        scaled_image, scaled_image2 = self.make_pair(scaled_image)
        scaled_and_distorted_image = self.distort(
            dict(img=scaled_image2, persp=(1,0,0,0,1,0,0,0)))
        W, H = scaled_image.size
        trf = scaled_and_distorted_image['persp']

        meta = dict()
        if 'aflow' in output or 'flow' in output:
            # compute optical flow
            xy = np.mgrid[0:H,0:W][::-1].reshape(2,H*W).T
            aflow = np.float32(persp_apply(trf, xy).reshape(H,W,2))
            meta['flow'] = aflow - xy.reshape(H,W,2)
            meta['aflow'] = aflow
        
        if 'homography' in output:
            meta['homography'] = np.float32(trf+(1,)).reshape(3,3)

        return scaled_image, scaled_and_distorted_image['img'], meta
    
    def __repr__(self):
        res =  'Dataset: %s\n' % self.__class__.__name__
        res += '  %d images and pairs' % self.npairs
        res += '\n  root: %s...' % self.dataset.root
        res += '\n  Scale: %s' % (repr(self.scale).replace('\n',''))
        res += '\n  Distort: %s' % (repr(self.distort).replace('\n',''))
        return res + '\n'



class TransformedPairs (PairDataset):
    """ Automatic data augmentation for pre-existing image pairs.
        Given an image pair dataset, it generates synthetically jittered pairs
        using random transformations (e.g. homographies & noise).
    """
    def __init__(self, dataset, trf=''):
        self.attach_dataset(dataset)
        self.trf = instanciate_transformation(trf)

    def attach_dataset(self, dataset):
        assert isinstance(dataset, PairDataset)
        self.dataset = dataset
        self.nimg = dataset.nimg
        self.npairs = dataset.npairs
        self.get_image = dataset.get_image
        self.get_key = dataset.get_key
        self.get_filename = dataset.get_filename
        self.root = None
        
    def get_pair(self, i, output=''):
        """ Procedure:
        This function applies a series of random transformations to one original image 
        to form a synthetic image pairs with perfect ground-truth.
        """
        img_a, img_b_, metadata = self.dataset.get_pair(i, output)

        img_b = self.trf({'img': img_b_, 'persp':(1,0,0,0,1,0,0,0)})
        trf = img_b['persp']

        if 'aflow' in metadata or 'flow' in metadata:
            aflow = metadata['aflow']
            aflow[:] = persp_apply(trf, aflow.reshape(-1,2)).reshape(aflow.shape)
            W, H = img_a.size
            flow = metadata['flow']
            mgrid = np.mgrid[0:H, 0:W][::-1].transpose(1,2,0).astype(np.float32)
            flow[:] = aflow - mgrid

        if 'corres' in metadata:
            corres = metadata['corres']
            corres[:,1] = persp_apply(trf, corres[:,1])
        
        if 'homography' in metadata:
            # p_b = homography * p_a
            trf_ = np.float32(trf+(1,)).reshape(3,3)
            metadata['homography'] = np.float32(trf_ @ metadata['homography'])

        return img_a, img_b['img'], metadata

    def __repr__(self):
        res =  'Transformed Pairs from %s\n' % type(self.dataset).__name__
        res += '  %d images and pairs' % self.npairs
        res += '\n  root: %s...' % self.dataset.root
        res += '\n  transform: %s' % (repr(self.trf).replace('\n',''))
        return res + '\n'



class CatPairDataset (CatDataset):
    ''' Concatenation of several pair datasets.
    '''
    def __init__(self, *datasets):
        CatDataset.__init__(self, *datasets)
        pair_offsets = [0]
        for db in datasets:
            pair_offsets.append(db.npairs)
        self.pair_offsets = np.cumsum(pair_offsets)
        self.npairs = self.pair_offsets[-1]

    def __len__(self):
        return self.npairs

    def __repr__(self):
        fmt_str = "CatPairDataset("
        for db in self.datasets:
            fmt_str += str(db).replace("\n"," ") + ', '
        return fmt_str[:-2] + ')'

    def pair_which(self, i):
        pos = np.searchsorted(self.pair_offsets, i, side='right')-1
        assert pos < self.npairs, 'Bad pair index %d >= %d' % (i, self.npairs)
        return pos, i - self.pair_offsets[pos]

    def pair_call(self, func, i, *args, **kwargs):
        b, j = self.pair_which(i)
        return getattr(self.datasets[b], func)(j, *args, **kwargs)

    def get_pair(self, i, output=()):
        b, i = self.pair_which(i)
        return self.datasets[b].get_pair(i, output)

    def get_flow_filename(self, pair_idx, *args, **kwargs):
        return self.pair_call('get_flow_filename', pair_idx, *args, **kwargs)

    def get_mask_filename(self, pair_idx, *args, **kwargs):
        return self.pair_call('get_mask_filename', pair_idx, *args, **kwargs)

    def get_corres_filename(self, pair_idx, *args, **kwargs):
        return self.pair_call('get_corres_filename', pair_idx, *args, **kwargs)



def is_pair(x):
    if isinstance(x, (tuple,list)) and len(x) == 2:
        return True
    if isinstance(x, np.ndarray) and x.ndim == 1 and x.shape[0] == 2:
        return True
    return False