File size: 5,724 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from __future__ import print_function, division
import os, random, time
import torch
import numpy as np
from torch.utils.data import Dataset
from torchvision import transforms, utils
import rawpy
from glob import glob
from PIL import Image as PILImage
import numbers
from scipy.misc import imread
from .base_dataset import BaseDataset
class FiveKDatasetTrain(BaseDataset):
def __init__(self, opt):
super().__init__(opt=opt)
self.patch_size = 256
input_RAWs_WBs, target_RGBs = self.load(is_train=True)
assert len(input_RAWs_WBs) == len(target_RGBs)
self.data = {"input_RAWs_WBs": input_RAWs_WBs, "target_RGBs": target_RGBs}
def random_flip(self, input_raw, target_rgb):
idx = np.random.randint(2)
input_raw = np.flip(input_raw, axis=idx).copy()
target_rgb = np.flip(target_rgb, axis=idx).copy()
return input_raw, target_rgb
def random_rotate(self, input_raw, target_rgb):
idx = np.random.randint(4)
input_raw = np.rot90(input_raw, k=idx)
target_rgb = np.rot90(target_rgb, k=idx)
return input_raw, target_rgb
def random_crop(self, patch_size, input_raw, target_rgb, flow=False, demos=False):
H, W, _ = input_raw.shape
rnd_h = random.randint(0, max(0, H - patch_size))
rnd_w = random.randint(0, max(0, W - patch_size))
patch_input_raw = input_raw[
rnd_h : rnd_h + patch_size, rnd_w : rnd_w + patch_size, :
]
if flow or demos:
patch_target_rgb = target_rgb[
rnd_h : rnd_h + patch_size, rnd_w : rnd_w + patch_size, :
]
else:
patch_target_rgb = target_rgb[
rnd_h * 2 : rnd_h * 2 + patch_size * 2,
rnd_w * 2 : rnd_w * 2 + patch_size * 2,
:,
]
return patch_input_raw, patch_target_rgb
def aug(self, patch_size, input_raw, target_rgb, flow=False, demos=False):
input_raw, target_rgb = self.random_crop(
patch_size, input_raw, target_rgb, flow=flow, demos=demos
)
input_raw, target_rgb = self.random_rotate(input_raw, target_rgb)
input_raw, target_rgb = self.random_flip(input_raw, target_rgb)
return input_raw, target_rgb
def __len__(self):
return len(self.data["input_RAWs_WBs"])
def __getitem__(self, idx):
input_raw_wb_path = self.data["input_RAWs_WBs"][idx]
target_rgb_path = self.data["target_RGBs"][idx]
target_rgb_img = imread(target_rgb_path)
input_raw_wb = np.load(input_raw_wb_path)
input_raw_img = input_raw_wb["raw"]
wb = input_raw_wb["wb"]
wb = wb / wb.max()
input_raw_img = input_raw_img * wb[:-1]
self.patch_size = 256
input_raw_img, target_rgb_img = self.aug(
self.patch_size, input_raw_img, target_rgb_img, flow=True, demos=True
)
if self.gamma:
norm_value = (
np.power(4095, 1 / 2.2)
if self.camera_name == "Canon_EOS_5D"
else np.power(16383, 1 / 2.2)
)
input_raw_img = np.power(input_raw_img, 1 / 2.2)
else:
norm_value = 4095 if self.camera_name == "Canon_EOS_5D" else 16383
target_rgb_img = self.norm_img(target_rgb_img, max_value=255)
input_raw_img = self.norm_img(input_raw_img, max_value=norm_value)
target_raw_img = input_raw_img.copy()
input_raw_img = self.np2tensor(input_raw_img).float()
target_rgb_img = self.np2tensor(target_rgb_img).float()
target_raw_img = self.np2tensor(target_raw_img).float()
sample = {
"input_raw": input_raw_img,
"target_rgb": target_rgb_img,
"target_raw": target_raw_img,
"file_name": input_raw_wb_path.split("/")[-1].split(".")[0],
}
return sample
class FiveKDatasetTest(BaseDataset):
def __init__(self, opt):
super().__init__(opt=opt)
self.patch_size = 256
input_RAWs_WBs, target_RGBs = self.load(is_train=False)
assert len(input_RAWs_WBs) == len(target_RGBs)
self.data = {"input_RAWs_WBs": input_RAWs_WBs, "target_RGBs": target_RGBs}
def __len__(self):
return len(self.data["input_RAWs_WBs"])
def __getitem__(self, idx):
input_raw_wb_path = self.data["input_RAWs_WBs"][idx]
target_rgb_path = self.data["target_RGBs"][idx]
target_rgb_img = imread(target_rgb_path)
input_raw_wb = np.load(input_raw_wb_path)
input_raw_img = input_raw_wb["raw"]
wb = input_raw_wb["wb"]
wb = wb / wb.max()
input_raw_img = input_raw_img * wb[:-1]
if self.gamma:
norm_value = (
np.power(4095, 1 / 2.2)
if self.camera_name == "Canon_EOS_5D"
else np.power(16383, 1 / 2.2)
)
input_raw_img = np.power(input_raw_img, 1 / 2.2)
else:
norm_value = 4095 if self.camera_name == "Canon_EOS_5D" else 16383
target_rgb_img = self.norm_img(target_rgb_img, max_value=255)
input_raw_img = self.norm_img(input_raw_img, max_value=norm_value)
target_raw_img = input_raw_img.copy()
input_raw_img = self.np2tensor(input_raw_img).float()
target_rgb_img = self.np2tensor(target_rgb_img).float()
target_raw_img = self.np2tensor(target_raw_img).float()
sample = {
"input_raw": input_raw_img,
"target_rgb": target_rgb_img,
"target_raw": target_raw_img,
"file_name": input_raw_wb_path.split("/")[-1].split(".")[0],
}
return sample
|