File size: 11,236 Bytes
404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils import split_feature, compute_same_pad
def gaussian_p(mean, logs, x):
"""
lnL = -1/2 * { ln|Var| + ((X - Mu)^T)(Var^-1)(X - Mu) + kln(2*PI) }
k = 1 (Independent)
Var = logs ** 2
"""
c = math.log(2 * math.pi)
return -0.5 * (logs * 2.0 + ((x - mean) ** 2) / torch.exp(logs * 2.0) + c)
def gaussian_likelihood(mean, logs, x):
p = gaussian_p(mean, logs, x)
return torch.sum(p, dim=[1, 2, 3])
def gaussian_sample(mean, logs, temperature=1):
# Sample from Gaussian with temperature
z = torch.normal(mean, torch.exp(logs) * temperature)
return z
def squeeze2d(input, factor):
if factor == 1:
return input
B, C, H, W = input.size()
assert H % factor == 0 and W % factor == 0, "H or W modulo factor is not 0"
x = input.view(B, C, H // factor, factor, W // factor, factor)
x = x.permute(0, 1, 3, 5, 2, 4).contiguous()
x = x.view(B, C * factor * factor, H // factor, W // factor)
return x
def unsqueeze2d(input, factor):
if factor == 1:
return input
factor2 = factor**2
B, C, H, W = input.size()
assert C % (factor2) == 0, "C module factor squared is not 0"
x = input.view(B, C // factor2, factor, factor, H, W)
x = x.permute(0, 1, 4, 2, 5, 3).contiguous()
x = x.view(B, C // (factor2), H * factor, W * factor)
return x
class _ActNorm(nn.Module):
"""
Activation Normalization
Initialize the bias and scale with a given minibatch,
so that the output per-channel have zero mean and unit variance for that.
After initialization, `bias` and `logs` will be trained as parameters.
"""
def __init__(self, num_features, scale=1.0):
super().__init__()
# register mean and scale
size = [1, num_features, 1, 1]
self.bias = nn.Parameter(torch.zeros(*size))
self.logs = nn.Parameter(torch.zeros(*size))
self.num_features = num_features
self.scale = scale
self.inited = False
def initialize_parameters(self, input):
if not self.training:
raise ValueError("In Eval mode, but ActNorm not inited")
with torch.no_grad():
bias = -torch.mean(input.clone(), dim=[0, 2, 3], keepdim=True)
vars = torch.mean((input.clone() + bias) ** 2, dim=[0, 2, 3], keepdim=True)
logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-6))
self.bias.data.copy_(bias.data)
self.logs.data.copy_(logs.data)
self.inited = True
def _center(self, input, reverse=False):
if reverse:
return input - self.bias
else:
return input + self.bias
def _scale(self, input, logdet=None, reverse=False):
if reverse:
input = input * torch.exp(-self.logs)
else:
input = input * torch.exp(self.logs)
if logdet is not None:
"""
logs is log_std of `mean of channels`
so we need to multiply by number of pixels
"""
b, c, h, w = input.shape
dlogdet = torch.sum(self.logs) * h * w
if reverse:
dlogdet *= -1
logdet = logdet + dlogdet
return input, logdet
def forward(self, input, logdet=None, reverse=False):
self._check_input_dim(input)
if not self.inited:
self.initialize_parameters(input)
if reverse:
input, logdet = self._scale(input, logdet, reverse)
input = self._center(input, reverse)
else:
input = self._center(input, reverse)
input, logdet = self._scale(input, logdet, reverse)
return input, logdet
class ActNorm2d(_ActNorm):
def __init__(self, num_features, scale=1.0):
super().__init__(num_features, scale)
def _check_input_dim(self, input):
assert len(input.size()) == 4
assert input.size(1) == self.num_features, (
"[ActNorm]: input should be in shape as `BCHW`,"
" channels should be {} rather than {}".format(
self.num_features, input.size()
)
)
class LinearZeros(nn.Module):
def __init__(self, in_channels, out_channels, logscale_factor=3):
super().__init__()
self.linear = nn.Linear(in_channels, out_channels)
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
self.logscale_factor = logscale_factor
self.logs = nn.Parameter(torch.zeros(out_channels))
def forward(self, input):
output = self.linear(input)
return output * torch.exp(self.logs * self.logscale_factor)
class Conv2d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding="same",
do_actnorm=True,
weight_std=0.05,
):
super().__init__()
if padding == "same":
padding = compute_same_pad(kernel_size, stride)
elif padding == "valid":
padding = 0
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
bias=(not do_actnorm),
)
# init weight with std
self.conv.weight.data.normal_(mean=0.0, std=weight_std)
if not do_actnorm:
self.conv.bias.data.zero_()
else:
self.actnorm = ActNorm2d(out_channels)
self.do_actnorm = do_actnorm
def forward(self, input):
x = self.conv(input)
if self.do_actnorm:
x, _ = self.actnorm(x)
return x
class Conv2dZeros(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding="same",
logscale_factor=3,
):
super().__init__()
if padding == "same":
padding = compute_same_pad(kernel_size, stride)
elif padding == "valid":
padding = 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.conv.weight.data.zero_()
self.conv.bias.data.zero_()
self.logscale_factor = logscale_factor
self.logs = nn.Parameter(torch.zeros(out_channels, 1, 1))
def forward(self, input):
output = self.conv(input)
return output * torch.exp(self.logs * self.logscale_factor)
class Permute2d(nn.Module):
def __init__(self, num_channels, shuffle):
super().__init__()
self.num_channels = num_channels
self.indices = torch.arange(self.num_channels - 1, -1, -1, dtype=torch.long)
self.indices_inverse = torch.zeros((self.num_channels), dtype=torch.long)
for i in range(self.num_channels):
self.indices_inverse[self.indices[i]] = i
if shuffle:
self.reset_indices()
def reset_indices(self):
shuffle_idx = torch.randperm(self.indices.shape[0])
self.indices = self.indices[shuffle_idx]
for i in range(self.num_channels):
self.indices_inverse[self.indices[i]] = i
def forward(self, input, reverse=False):
assert len(input.size()) == 4
if not reverse:
input = input[:, self.indices, :, :]
return input
else:
return input[:, self.indices_inverse, :, :]
class Split2d(nn.Module):
def __init__(self, num_channels):
super().__init__()
self.conv = Conv2dZeros(num_channels // 2, num_channels)
def split2d_prior(self, z):
h = self.conv(z)
return split_feature(h, "cross")
def forward(self, input, logdet=0.0, reverse=False, temperature=None):
if reverse:
z1 = input
mean, logs = self.split2d_prior(z1)
z2 = gaussian_sample(mean, logs, temperature)
z = torch.cat((z1, z2), dim=1)
return z, logdet
else:
z1, z2 = split_feature(input, "split")
mean, logs = self.split2d_prior(z1)
logdet = gaussian_likelihood(mean, logs, z2) + logdet
return z1, logdet
class SqueezeLayer(nn.Module):
def __init__(self, factor):
super().__init__()
self.factor = factor
def forward(self, input, logdet=None, reverse=False):
if reverse:
output = unsqueeze2d(input, self.factor)
else:
output = squeeze2d(input, self.factor)
return output, logdet
class InvertibleConv1x1(nn.Module):
def __init__(self, num_channels, LU_decomposed):
super().__init__()
w_shape = [num_channels, num_channels]
w_init = torch.linalg.qr(torch.randn(*w_shape))[0]
if not LU_decomposed:
self.weight = nn.Parameter(torch.Tensor(w_init))
else:
p, lower, upper = torch.lu_unpack(*torch.lu(w_init))
s = torch.diag(upper)
sign_s = torch.sign(s)
log_s = torch.log(torch.abs(s))
upper = torch.triu(upper, 1)
l_mask = torch.tril(torch.ones(w_shape), -1)
eye = torch.eye(*w_shape)
self.register_buffer("p", p)
self.register_buffer("sign_s", sign_s)
self.lower = nn.Parameter(lower)
self.log_s = nn.Parameter(log_s)
self.upper = nn.Parameter(upper)
self.l_mask = l_mask
self.eye = eye
self.w_shape = w_shape
self.LU_decomposed = LU_decomposed
def get_weight(self, input, reverse):
b, c, h, w = input.shape
if not self.LU_decomposed:
dlogdet = torch.slogdet(self.weight)[1] * h * w
if reverse:
weight = torch.inverse(self.weight)
else:
weight = self.weight
else:
self.l_mask = self.l_mask.to(input.device)
self.eye = self.eye.to(input.device)
lower = self.lower * self.l_mask + self.eye
u = self.upper * self.l_mask.transpose(0, 1).contiguous()
u += torch.diag(self.sign_s * torch.exp(self.log_s))
dlogdet = torch.sum(self.log_s) * h * w
if reverse:
u_inv = torch.inverse(u)
l_inv = torch.inverse(lower)
p_inv = torch.inverse(self.p)
weight = torch.matmul(u_inv, torch.matmul(l_inv, p_inv))
else:
weight = torch.matmul(self.p, torch.matmul(lower, u))
return weight.view(self.w_shape[0], self.w_shape[1], 1, 1), dlogdet
def forward(self, input, logdet=None, reverse=False):
"""
log-det = log|abs(|W|)| * pixels
"""
weight, dlogdet = self.get_weight(input, reverse)
if not reverse:
z = F.conv2d(input, weight)
if logdet is not None:
logdet = logdet + dlogdet
return z, logdet
else:
z = F.conv2d(input, weight)
if logdet is not None:
logdet = logdet - dlogdet
return z, logdet
|