File size: 11,236 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from .utils import split_feature, compute_same_pad


def gaussian_p(mean, logs, x):
    """
    lnL = -1/2 * { ln|Var| + ((X - Mu)^T)(Var^-1)(X - Mu) + kln(2*PI) }
            k = 1 (Independent)
            Var = logs ** 2
    """
    c = math.log(2 * math.pi)
    return -0.5 * (logs * 2.0 + ((x - mean) ** 2) / torch.exp(logs * 2.0) + c)


def gaussian_likelihood(mean, logs, x):
    p = gaussian_p(mean, logs, x)
    return torch.sum(p, dim=[1, 2, 3])


def gaussian_sample(mean, logs, temperature=1):
    # Sample from Gaussian with temperature
    z = torch.normal(mean, torch.exp(logs) * temperature)

    return z


def squeeze2d(input, factor):
    if factor == 1:
        return input

    B, C, H, W = input.size()

    assert H % factor == 0 and W % factor == 0, "H or W modulo factor is not 0"

    x = input.view(B, C, H // factor, factor, W // factor, factor)
    x = x.permute(0, 1, 3, 5, 2, 4).contiguous()
    x = x.view(B, C * factor * factor, H // factor, W // factor)

    return x


def unsqueeze2d(input, factor):
    if factor == 1:
        return input

    factor2 = factor**2

    B, C, H, W = input.size()

    assert C % (factor2) == 0, "C module factor squared is not 0"

    x = input.view(B, C // factor2, factor, factor, H, W)
    x = x.permute(0, 1, 4, 2, 5, 3).contiguous()
    x = x.view(B, C // (factor2), H * factor, W * factor)

    return x


class _ActNorm(nn.Module):
    """
    Activation Normalization
    Initialize the bias and scale with a given minibatch,
    so that the output per-channel have zero mean and unit variance for that.

    After initialization, `bias` and `logs` will be trained as parameters.
    """

    def __init__(self, num_features, scale=1.0):
        super().__init__()
        # register mean and scale
        size = [1, num_features, 1, 1]
        self.bias = nn.Parameter(torch.zeros(*size))
        self.logs = nn.Parameter(torch.zeros(*size))
        self.num_features = num_features
        self.scale = scale
        self.inited = False

    def initialize_parameters(self, input):
        if not self.training:
            raise ValueError("In Eval mode, but ActNorm not inited")

        with torch.no_grad():
            bias = -torch.mean(input.clone(), dim=[0, 2, 3], keepdim=True)
            vars = torch.mean((input.clone() + bias) ** 2, dim=[0, 2, 3], keepdim=True)
            logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-6))

            self.bias.data.copy_(bias.data)
            self.logs.data.copy_(logs.data)

            self.inited = True

    def _center(self, input, reverse=False):
        if reverse:
            return input - self.bias
        else:
            return input + self.bias

    def _scale(self, input, logdet=None, reverse=False):

        if reverse:
            input = input * torch.exp(-self.logs)
        else:
            input = input * torch.exp(self.logs)

        if logdet is not None:
            """
            logs is log_std of `mean of channels`
            so we need to multiply by number of pixels
            """
            b, c, h, w = input.shape

            dlogdet = torch.sum(self.logs) * h * w

            if reverse:
                dlogdet *= -1

            logdet = logdet + dlogdet

        return input, logdet

    def forward(self, input, logdet=None, reverse=False):
        self._check_input_dim(input)

        if not self.inited:
            self.initialize_parameters(input)

        if reverse:
            input, logdet = self._scale(input, logdet, reverse)
            input = self._center(input, reverse)
        else:
            input = self._center(input, reverse)
            input, logdet = self._scale(input, logdet, reverse)

        return input, logdet


class ActNorm2d(_ActNorm):
    def __init__(self, num_features, scale=1.0):
        super().__init__(num_features, scale)

    def _check_input_dim(self, input):
        assert len(input.size()) == 4
        assert input.size(1) == self.num_features, (
            "[ActNorm]: input should be in shape as `BCHW`,"
            " channels should be {} rather than {}".format(
                self.num_features, input.size()
            )
        )


class LinearZeros(nn.Module):
    def __init__(self, in_channels, out_channels, logscale_factor=3):
        super().__init__()

        self.linear = nn.Linear(in_channels, out_channels)
        self.linear.weight.data.zero_()
        self.linear.bias.data.zero_()

        self.logscale_factor = logscale_factor

        self.logs = nn.Parameter(torch.zeros(out_channels))

    def forward(self, input):
        output = self.linear(input)
        return output * torch.exp(self.logs * self.logscale_factor)


class Conv2d(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size=(3, 3),
        stride=(1, 1),
        padding="same",
        do_actnorm=True,
        weight_std=0.05,
    ):
        super().__init__()

        if padding == "same":
            padding = compute_same_pad(kernel_size, stride)
        elif padding == "valid":
            padding = 0

        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            bias=(not do_actnorm),
        )

        # init weight with std
        self.conv.weight.data.normal_(mean=0.0, std=weight_std)

        if not do_actnorm:
            self.conv.bias.data.zero_()
        else:
            self.actnorm = ActNorm2d(out_channels)

        self.do_actnorm = do_actnorm

    def forward(self, input):
        x = self.conv(input)
        if self.do_actnorm:
            x, _ = self.actnorm(x)
        return x


class Conv2dZeros(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size=(3, 3),
        stride=(1, 1),
        padding="same",
        logscale_factor=3,
    ):
        super().__init__()

        if padding == "same":
            padding = compute_same_pad(kernel_size, stride)
        elif padding == "valid":
            padding = 0

        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)

        self.conv.weight.data.zero_()
        self.conv.bias.data.zero_()

        self.logscale_factor = logscale_factor
        self.logs = nn.Parameter(torch.zeros(out_channels, 1, 1))

    def forward(self, input):
        output = self.conv(input)
        return output * torch.exp(self.logs * self.logscale_factor)


class Permute2d(nn.Module):
    def __init__(self, num_channels, shuffle):
        super().__init__()
        self.num_channels = num_channels
        self.indices = torch.arange(self.num_channels - 1, -1, -1, dtype=torch.long)
        self.indices_inverse = torch.zeros((self.num_channels), dtype=torch.long)

        for i in range(self.num_channels):
            self.indices_inverse[self.indices[i]] = i

        if shuffle:
            self.reset_indices()

    def reset_indices(self):
        shuffle_idx = torch.randperm(self.indices.shape[0])
        self.indices = self.indices[shuffle_idx]

        for i in range(self.num_channels):
            self.indices_inverse[self.indices[i]] = i

    def forward(self, input, reverse=False):
        assert len(input.size()) == 4

        if not reverse:
            input = input[:, self.indices, :, :]
            return input
        else:
            return input[:, self.indices_inverse, :, :]


class Split2d(nn.Module):
    def __init__(self, num_channels):
        super().__init__()
        self.conv = Conv2dZeros(num_channels // 2, num_channels)

    def split2d_prior(self, z):
        h = self.conv(z)
        return split_feature(h, "cross")

    def forward(self, input, logdet=0.0, reverse=False, temperature=None):
        if reverse:
            z1 = input
            mean, logs = self.split2d_prior(z1)
            z2 = gaussian_sample(mean, logs, temperature)
            z = torch.cat((z1, z2), dim=1)
            return z, logdet
        else:
            z1, z2 = split_feature(input, "split")
            mean, logs = self.split2d_prior(z1)
            logdet = gaussian_likelihood(mean, logs, z2) + logdet
            return z1, logdet


class SqueezeLayer(nn.Module):
    def __init__(self, factor):
        super().__init__()
        self.factor = factor

    def forward(self, input, logdet=None, reverse=False):
        if reverse:
            output = unsqueeze2d(input, self.factor)
        else:
            output = squeeze2d(input, self.factor)

        return output, logdet


class InvertibleConv1x1(nn.Module):
    def __init__(self, num_channels, LU_decomposed):
        super().__init__()
        w_shape = [num_channels, num_channels]
        w_init = torch.linalg.qr(torch.randn(*w_shape))[0]

        if not LU_decomposed:
            self.weight = nn.Parameter(torch.Tensor(w_init))
        else:
            p, lower, upper = torch.lu_unpack(*torch.lu(w_init))
            s = torch.diag(upper)
            sign_s = torch.sign(s)
            log_s = torch.log(torch.abs(s))
            upper = torch.triu(upper, 1)
            l_mask = torch.tril(torch.ones(w_shape), -1)
            eye = torch.eye(*w_shape)

            self.register_buffer("p", p)
            self.register_buffer("sign_s", sign_s)
            self.lower = nn.Parameter(lower)
            self.log_s = nn.Parameter(log_s)
            self.upper = nn.Parameter(upper)
            self.l_mask = l_mask
            self.eye = eye

        self.w_shape = w_shape
        self.LU_decomposed = LU_decomposed

    def get_weight(self, input, reverse):
        b, c, h, w = input.shape

        if not self.LU_decomposed:
            dlogdet = torch.slogdet(self.weight)[1] * h * w
            if reverse:
                weight = torch.inverse(self.weight)
            else:
                weight = self.weight
        else:
            self.l_mask = self.l_mask.to(input.device)
            self.eye = self.eye.to(input.device)

            lower = self.lower * self.l_mask + self.eye

            u = self.upper * self.l_mask.transpose(0, 1).contiguous()
            u += torch.diag(self.sign_s * torch.exp(self.log_s))

            dlogdet = torch.sum(self.log_s) * h * w

            if reverse:
                u_inv = torch.inverse(u)
                l_inv = torch.inverse(lower)
                p_inv = torch.inverse(self.p)

                weight = torch.matmul(u_inv, torch.matmul(l_inv, p_inv))
            else:
                weight = torch.matmul(self.p, torch.matmul(lower, u))

        return weight.view(self.w_shape[0], self.w_shape[1], 1, 1), dlogdet

    def forward(self, input, logdet=None, reverse=False):
        """
        log-det = log|abs(|W|)| * pixels
        """
        weight, dlogdet = self.get_weight(input, reverse)

        if not reverse:
            z = F.conv2d(input, weight)
            if logdet is not None:
                logdet = logdet + dlogdet
            return z, logdet
        else:
            z = F.conv2d(input, weight)
            if logdet is not None:
                logdet = logdet - dlogdet
            return z, logdet