File size: 1,320 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import math
import torch


def compute_same_pad(kernel_size, stride):
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size]

    if isinstance(stride, int):
        stride = [stride]

    assert len(stride) == len(
        kernel_size
    ), "Pass kernel size and stride both as int, or both as equal length iterable"

    return [((k - 1) * s + 1) // 2 for k, s in zip(kernel_size, stride)]


def uniform_binning_correction(x, n_bits=8):
    """Replaces x^i with q^i(x) = U(x, x + 1.0 / 256.0).

    Args:
        x: 4-D Tensor of shape (NCHW)
        n_bits: optional.
    Returns:
        x: x ~ U(x, x + 1.0 / 256)
        objective: Equivalent to -q(x)*log(q(x)).
    """
    b, c, h, w = x.size()
    n_bins = 2**n_bits
    chw = c * h * w
    x += torch.zeros_like(x).uniform_(0, 1.0 / n_bins)

    objective = -math.log(n_bins) * chw * torch.ones(b, device=x.device)
    return x, objective


def split_feature(tensor, type="split"):
    """
    type = ["split", "cross"]
    """
    C = tensor.size(1)
    if type == "split":
        # return tensor[:, : C // 2, ...], tensor[:, C // 2 :, ...]
        return tensor[:, :1, ...], tensor[:, 1:, ...]
    elif type == "cross":
        # return tensor[:, 0::2, ...], tensor[:, 1::2, ...]
        return tensor[:, 0::2, ...], tensor[:, 1::2, ...]