File size: 3,404 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from kornia.geometry.subpix import dsnt
from kornia.utils.grid import create_meshgrid
class FineMatching(nn.Module):
"""FineMatching with s2d paradigm"""
def __init__(self):
super().__init__()
def forward(self, feat_f0, feat_f1, data):
"""
Args:
feat0 (torch.Tensor): [M, WW, C]
feat1 (torch.Tensor): [M, WW, C]
data (dict)
Update:
data (dict):{
'expec_f' (torch.Tensor): [M, 3],
'mkpts0_f' (torch.Tensor): [M, 2],
'mkpts1_f' (torch.Tensor): [M, 2]}
"""
M, WW, C = feat_f0.shape
W = int(math.sqrt(WW))
scale = data["hw0_i"][0] / data["hw0_f"][0]
self.M, self.W, self.WW, self.C, self.scale = M, W, WW, C, scale
# corner case: if no coarse matches found
if M == 0:
assert (
self.training == False
), "M is always >0, when training, see coarse_matching.py"
# logger.warning('No matches found in coarse-level.')
data.update(
{
"expec_f": torch.empty(0, 3, device=feat_f0.device),
"mkpts0_f": data["mkpts0_c"],
"mkpts1_f": data["mkpts1_c"],
}
)
return
feat_f0_picked = feat_f0[:, WW // 2, :]
sim_matrix = torch.einsum("mc,mrc->mr", feat_f0_picked, feat_f1)
softmax_temp = 1.0 / C**0.5
heatmap = torch.softmax(softmax_temp * sim_matrix, dim=1)
feat_f1_picked = (feat_f1 * heatmap.unsqueeze(-1)).sum(dim=1) # [M, C]
heatmap = heatmap.view(-1, W, W)
# compute coordinates from heatmap
coords1_normalized = dsnt.spatial_expectation2d(heatmap[None], True)[
0
] # [M, 2]
grid_normalized = create_meshgrid(W, W, True, heatmap.device).reshape(
1, -1, 2
) # [1, WW, 2]
# compute std over <x, y>
var = (
torch.sum(grid_normalized**2 * heatmap.view(-1, WW, 1), dim=1)
- coords1_normalized**2
) # [M, 2]
std = torch.sum(
torch.sqrt(torch.clamp(var, min=1e-10)), -1
) # [M] clamp needed for numerical stability
# for fine-level supervision
data.update(
{
"expec_f": torch.cat([coords1_normalized, std.unsqueeze(1)], -1),
"descriptors0": feat_f0_picked.detach(),
"descriptors1": feat_f1_picked.detach(),
}
)
# compute absolute kpt coords
self.get_fine_match(coords1_normalized, data)
@torch.no_grad()
def get_fine_match(self, coords1_normed, data):
W, WW, C, scale = self.W, self.WW, self.C, self.scale
# mkpts0_f and mkpts1_f
# scale0 = scale * data['scale0'][data['b_ids']] if 'scale0' in data else scale
mkpts0_f = data[
"mkpts0_c"
] # + (coords0_normed * (W // 2) * scale0 )[:len(data['mconf'])]
scale1 = scale * data["scale1"][data["b_ids"]] if "scale1" in data else scale
mkpts1_f = (
data["mkpts1_c"]
+ (coords1_normed * (W // 2) * scale1)[: len(data["mconf"])]
)
data.update({"mkpts0_f": mkpts0_f, "mkpts1_f": mkpts1_f})
|