File size: 5,893 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from math import log
from loguru import logger
import torch
from einops import repeat
from kornia.utils import create_meshgrid
from .geometry import warp_kpts
############## ↓ Coarse-Level supervision ↓ ##############
@torch.no_grad()
def mask_pts_at_padded_regions(grid_pt, mask):
"""For megadepth dataset, zero-padding exists in images"""
mask = repeat(mask, "n h w -> n (h w) c", c=2)
grid_pt[~mask.bool()] = 0
return grid_pt
@torch.no_grad()
def spvs_coarse(data, config):
"""
Update:
data (dict): {
"conf_matrix_gt": [N, hw0, hw1],
'spv_b_ids': [M]
'spv_i_ids': [M]
'spv_j_ids': [M]
'spv_w_pt0_i': [N, hw0, 2], in original image resolution
'spv_pt1_i': [N, hw1, 2], in original image resolution
}
NOTE:
- for scannet dataset, there're 3 kinds of resolution {i, c, f}
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
"""
# 1. misc
device = data["image0"].device
N, _, H0, W0 = data["image0"].shape
_, _, H1, W1 = data["image1"].shape
scale = config["MODEL"]["RESOLUTION"][0]
scale0 = scale * data["scale0"][:, None] if "scale0" in data else scale
scale1 = scale * data["scale1"][:, None] if "scale0" in data else scale
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])
# 2. warp grids
# create kpts in meshgrid and resize them to image resolution
grid_pt0_c = (
create_meshgrid(h0, w0, False, device).reshape(1, h0 * w0, 2).repeat(N, 1, 1)
) # [N, hw, 2]
grid_pt0_i = scale0 * grid_pt0_c
grid_pt1_c = (
create_meshgrid(h1, w1, False, device).reshape(1, h1 * w1, 2).repeat(N, 1, 1)
)
grid_pt1_i = scale1 * grid_pt1_c
# mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
if "mask0" in data:
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data["mask0"])
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data["mask1"])
# warp kpts bi-directionally and resize them to coarse-level resolution
# (no depth consistency check, since it leads to worse results experimentally)
# (unhandled edge case: points with 0-depth will be warped to the left-up corner)
_, w_pt0_i = warp_kpts(
grid_pt0_i,
data["depth0"],
data["depth1"],
data["T_0to1"],
data["K0"],
data["K1"],
)
_, w_pt1_i = warp_kpts(
grid_pt1_i,
data["depth1"],
data["depth0"],
data["T_1to0"],
data["K1"],
data["K0"],
)
w_pt0_c = w_pt0_i / scale1
w_pt1_c = w_pt1_i / scale0
# 3. check if mutual nearest neighbor
w_pt0_c_round = w_pt0_c[:, :, :].round().long()
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1
w_pt1_c_round = w_pt1_c[:, :, :].round().long()
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0
# corner case: out of boundary
def out_bound_mask(pt, w, h):
return (
(pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
)
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0
loop_back = torch.stack(
[nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0
)
correct_0to1 = loop_back == torch.arange(h0 * w0, device=device)[None].repeat(N, 1)
correct_0to1[:, 0] = False # ignore the top-left corner
# 4. construct a gt conf_matrix
conf_matrix_gt = torch.zeros(N, h0 * w0, h1 * w1, device=device)
b_ids, i_ids = torch.where(correct_0to1 != 0)
j_ids = nearest_index1[b_ids, i_ids]
conf_matrix_gt[b_ids, i_ids, j_ids] = 1
data.update({"conf_matrix_gt": conf_matrix_gt})
# 5. save coarse matches(gt) for training fine level
if len(b_ids) == 0:
logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
# this won't affect fine-level loss calculation
b_ids = torch.tensor([0], device=device)
i_ids = torch.tensor([0], device=device)
j_ids = torch.tensor([0], device=device)
data.update({"spv_b_ids": b_ids, "spv_i_ids": i_ids, "spv_j_ids": j_ids})
# 6. save intermediate results (for fast fine-level computation)
data.update({"spv_w_pt0_i": w_pt0_i, "spv_pt1_i": grid_pt1_i})
def compute_supervision_coarse(data, config):
assert (
len(set(data["dataset_name"])) == 1
), "Do not support mixed datasets training!"
data_source = data["dataset_name"][0]
if data_source.lower() in ["scannet", "megadepth"]:
spvs_coarse(data, config)
else:
raise ValueError(f"Unknown data source: {data_source}")
############## ↓ Fine-Level supervision ↓ ##############
@torch.no_grad()
def spvs_fine(data, config):
"""
Update:
data (dict):{
"expec_f_gt": [M, 2]}
"""
# 1. misc
# w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i')
w_pt0_i, pt1_i = data["spv_w_pt0_i"], data["spv_pt1_i"]
scale = config["MODEL"]["RESOLUTION"][1]
radius = config["MODEL"]["FINE_WINDOW_SIZE"] // 2
# 2. get coarse prediction
b_ids, i_ids, j_ids = data["b_ids"], data["i_ids"], data["j_ids"]
# 3. compute gt
scale = scale * data["scale1"][b_ids] if "scale0" in data else scale
# `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later
expec_f_gt = (
(w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius
) # [M, 2]
data.update({"expec_f_gt": expec_f_gt})
def compute_supervision_fine(data, config):
data_source = data["dataset_name"][0]
if data_source.lower() in ["scannet", "megadepth"]:
spvs_fine(data, config)
else:
raise NotImplementedError
|