File size: 5,893 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
8b973ee
 
 
 
 
 
404d2af
 
 
 
8b973ee
 
 
404d2af
8b973ee
 
 
404d2af
 
 
8b973ee
 
 
404d2af
 
 
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
 
 
 
 
 
 
 
 
 
 
8b973ee
 
 
 
404d2af
 
 
8b973ee
 
 
 
404d2af
 
 
8b973ee
404d2af
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
404d2af
 
 
8b973ee
 
 
 
 
404d2af
 
8b973ee
404d2af
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
8b973ee
 
 
404d2af
 
8b973ee
404d2af
 
8b973ee
404d2af
8b973ee
 
 
404d2af
 
 
 
8b973ee
 
404d2af
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from math import log
from loguru import logger

import torch
from einops import repeat
from kornia.utils import create_meshgrid

from .geometry import warp_kpts

##############  ↓  Coarse-Level supervision  ↓  ##############


@torch.no_grad()
def mask_pts_at_padded_regions(grid_pt, mask):
    """For megadepth dataset, zero-padding exists in images"""
    mask = repeat(mask, "n h w -> n (h w) c", c=2)
    grid_pt[~mask.bool()] = 0
    return grid_pt


@torch.no_grad()
def spvs_coarse(data, config):
    """
    Update:
        data (dict): {
            "conf_matrix_gt": [N, hw0, hw1],
            'spv_b_ids': [M]
            'spv_i_ids': [M]
            'spv_j_ids': [M]
            'spv_w_pt0_i': [N, hw0, 2], in original image resolution
            'spv_pt1_i': [N, hw1, 2], in original image resolution
        }

    NOTE:
        - for scannet dataset, there're 3 kinds of resolution {i, c, f}
        - for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
    """
    # 1. misc
    device = data["image0"].device
    N, _, H0, W0 = data["image0"].shape
    _, _, H1, W1 = data["image1"].shape
    scale = config["MODEL"]["RESOLUTION"][0]
    scale0 = scale * data["scale0"][:, None] if "scale0" in data else scale
    scale1 = scale * data["scale1"][:, None] if "scale0" in data else scale
    h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])

    # 2. warp grids
    # create kpts in meshgrid and resize them to image resolution
    grid_pt0_c = (
        create_meshgrid(h0, w0, False, device).reshape(1, h0 * w0, 2).repeat(N, 1, 1)
    )  # [N, hw, 2]
    grid_pt0_i = scale0 * grid_pt0_c
    grid_pt1_c = (
        create_meshgrid(h1, w1, False, device).reshape(1, h1 * w1, 2).repeat(N, 1, 1)
    )
    grid_pt1_i = scale1 * grid_pt1_c

    # mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
    if "mask0" in data:
        grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data["mask0"])
        grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data["mask1"])

    # warp kpts bi-directionally and resize them to coarse-level resolution
    # (no depth consistency check, since it leads to worse results experimentally)
    # (unhandled edge case: points with 0-depth will be warped to the left-up corner)
    _, w_pt0_i = warp_kpts(
        grid_pt0_i,
        data["depth0"],
        data["depth1"],
        data["T_0to1"],
        data["K0"],
        data["K1"],
    )
    _, w_pt1_i = warp_kpts(
        grid_pt1_i,
        data["depth1"],
        data["depth0"],
        data["T_1to0"],
        data["K1"],
        data["K0"],
    )
    w_pt0_c = w_pt0_i / scale1
    w_pt1_c = w_pt1_i / scale0

    # 3. check if mutual nearest neighbor
    w_pt0_c_round = w_pt0_c[:, :, :].round().long()
    nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1
    w_pt1_c_round = w_pt1_c[:, :, :].round().long()
    nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0

    # corner case: out of boundary
    def out_bound_mask(pt, w, h):
        return (
            (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
        )

    nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
    nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0

    loop_back = torch.stack(
        [nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0
    )
    correct_0to1 = loop_back == torch.arange(h0 * w0, device=device)[None].repeat(N, 1)
    correct_0to1[:, 0] = False  # ignore the top-left corner

    # 4. construct a gt conf_matrix
    conf_matrix_gt = torch.zeros(N, h0 * w0, h1 * w1, device=device)
    b_ids, i_ids = torch.where(correct_0to1 != 0)
    j_ids = nearest_index1[b_ids, i_ids]

    conf_matrix_gt[b_ids, i_ids, j_ids] = 1
    data.update({"conf_matrix_gt": conf_matrix_gt})

    # 5. save coarse matches(gt) for training fine level
    if len(b_ids) == 0:
        logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
        # this won't affect fine-level loss calculation
        b_ids = torch.tensor([0], device=device)
        i_ids = torch.tensor([0], device=device)
        j_ids = torch.tensor([0], device=device)

    data.update({"spv_b_ids": b_ids, "spv_i_ids": i_ids, "spv_j_ids": j_ids})

    # 6. save intermediate results (for fast fine-level computation)
    data.update({"spv_w_pt0_i": w_pt0_i, "spv_pt1_i": grid_pt1_i})


def compute_supervision_coarse(data, config):
    assert (
        len(set(data["dataset_name"])) == 1
    ), "Do not support mixed datasets training!"
    data_source = data["dataset_name"][0]
    if data_source.lower() in ["scannet", "megadepth"]:
        spvs_coarse(data, config)
    else:
        raise ValueError(f"Unknown data source: {data_source}")


##############  ↓  Fine-Level supervision  ↓  ##############


@torch.no_grad()
def spvs_fine(data, config):
    """
    Update:
        data (dict):{
            "expec_f_gt": [M, 2]}
    """
    # 1. misc
    # w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i')
    w_pt0_i, pt1_i = data["spv_w_pt0_i"], data["spv_pt1_i"]
    scale = config["MODEL"]["RESOLUTION"][1]
    radius = config["MODEL"]["FINE_WINDOW_SIZE"] // 2

    # 2. get coarse prediction
    b_ids, i_ids, j_ids = data["b_ids"], data["i_ids"], data["j_ids"]

    # 3. compute gt
    scale = scale * data["scale1"][b_ids] if "scale0" in data else scale
    # `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later
    expec_f_gt = (
        (w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius
    )  # [M, 2]
    data.update({"expec_f_gt": expec_f_gt})


def compute_supervision_fine(data, config):
    data_source = data["dataset_name"][0]
    if data_source.lower() in ["scannet", "megadepth"]:
        spvs_fine(data, config)
    else:
        raise NotImplementedError