File size: 6,444 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import torch
from torch import nn
from torchvision.models import resnet
from typing import Optional, Callable
class ConvBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
gate: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
):
super().__init__()
if gate is None:
self.gate = nn.ReLU(inplace=True)
else:
self.gate = gate
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv1 = resnet.conv3x3(in_channels, out_channels)
self.bn1 = norm_layer(out_channels)
self.conv2 = resnet.conv3x3(out_channels, out_channels)
self.bn2 = norm_layer(out_channels)
def forward(self, x):
x = self.gate(self.bn1(self.conv1(x))) # B x in_channels x H x W
x = self.gate(self.bn2(self.conv2(x))) # B x out_channels x H x W
return x
# copied from torchvision\models\resnet.py#27->BasicBlock
class ResBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
gate: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super(ResBlock, self).__init__()
if gate is None:
self.gate = nn.ReLU(inplace=True)
else:
self.gate = gate
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("ResBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in ResBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = resnet.conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.conv2 = resnet.conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: torch.Tensor) -> torch.Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.gate(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.gate(out)
return out
class ALNet(nn.Module):
def __init__(
self,
c1: int = 32,
c2: int = 64,
c3: int = 128,
c4: int = 128,
dim: int = 128,
single_head: bool = True,
):
super().__init__()
self.gate = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool4 = nn.MaxPool2d(kernel_size=4, stride=4)
self.block1 = ConvBlock(3, c1, self.gate, nn.BatchNorm2d)
self.block2 = ResBlock(
inplanes=c1,
planes=c2,
stride=1,
downsample=nn.Conv2d(c1, c2, 1),
gate=self.gate,
norm_layer=nn.BatchNorm2d,
)
self.block3 = ResBlock(
inplanes=c2,
planes=c3,
stride=1,
downsample=nn.Conv2d(c2, c3, 1),
gate=self.gate,
norm_layer=nn.BatchNorm2d,
)
self.block4 = ResBlock(
inplanes=c3,
planes=c4,
stride=1,
downsample=nn.Conv2d(c3, c4, 1),
gate=self.gate,
norm_layer=nn.BatchNorm2d,
)
# ================================== feature aggregation
self.conv1 = resnet.conv1x1(c1, dim // 4)
self.conv2 = resnet.conv1x1(c2, dim // 4)
self.conv3 = resnet.conv1x1(c3, dim // 4)
self.conv4 = resnet.conv1x1(dim, dim // 4)
self.upsample2 = nn.Upsample(
scale_factor=2, mode="bilinear", align_corners=True
)
self.upsample4 = nn.Upsample(
scale_factor=4, mode="bilinear", align_corners=True
)
self.upsample8 = nn.Upsample(
scale_factor=8, mode="bilinear", align_corners=True
)
self.upsample32 = nn.Upsample(
scale_factor=32, mode="bilinear", align_corners=True
)
# ================================== detector and descriptor head
self.single_head = single_head
if not self.single_head:
self.convhead1 = resnet.conv1x1(dim, dim)
self.convhead2 = resnet.conv1x1(dim, dim + 1)
def forward(self, image):
# ================================== feature encoder
x1 = self.block1(image) # B x c1 x H x W
x2 = self.pool2(x1)
x2 = self.block2(x2) # B x c2 x H/2 x W/2
x3 = self.pool4(x2)
x3 = self.block3(x3) # B x c3 x H/8 x W/8
x4 = self.pool4(x3)
x4 = self.block4(x4) # B x dim x H/32 x W/32
# ================================== feature aggregation
x1 = self.gate(self.conv1(x1)) # B x dim//4 x H x W
x2 = self.gate(self.conv2(x2)) # B x dim//4 x H//2 x W//2
x3 = self.gate(self.conv3(x3)) # B x dim//4 x H//8 x W//8
x4 = self.gate(self.conv4(x4)) # B x dim//4 x H//32 x W//32
x2_up = self.upsample2(x2) # B x dim//4 x H x W
x3_up = self.upsample8(x3) # B x dim//4 x H x W
x4_up = self.upsample32(x4) # B x dim//4 x H x W
x1234 = torch.cat([x1, x2_up, x3_up, x4_up], dim=1)
# ================================== detector and descriptor head
if not self.single_head:
x1234 = self.gate(self.convhead1(x1234))
x = self.convhead2(x1234) # B x dim+1 x H x W
descriptor_map = x[:, :-1, :, :]
scores_map = torch.sigmoid(x[:, -1, :, :]).unsqueeze(1)
return scores_map, descriptor_map
if __name__ == "__main__":
from thop import profile
net = ALNet(c1=16, c2=32, c3=64, c4=128, dim=128, single_head=True)
image = torch.randn(1, 3, 640, 480)
flops, params = profile(net, inputs=(image,), verbose=False)
print("{:<30} {:<8} GFLops".format("Computational complexity: ", flops / 1e9))
print("{:<30} {:<8} KB".format("Number of parameters: ", params / 1e3))
|