File size: 5,607 Bytes
62c7319
 
 
 
 
 
8b973ee
 
 
 
62c7319
8b973ee
 
 
 
 
62c7319
 
 
 
 
8b973ee
 
 
 
62c7319
 
8b973ee
 
 
62c7319
 
 
 
 
8b973ee
62c7319
 
 
8b973ee
 
62c7319
 
 
 
 
 
8b973ee
 
 
 
 
62c7319
 
8b973ee
 
62c7319
 
 
 
 
 
8b973ee
 
 
 
 
62c7319
 
8b973ee
 
62c7319
 
 
 
 
 
8b973ee
 
 
 
 
62c7319
 
8b973ee
 
62c7319
 
 
 
 
 
8b973ee
 
 
62c7319
 
 
 
 
 
 
8b973ee
 
 
 
 
 
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
 
 
 
 
 
 
 
 
62c7319
 
8b973ee
 
 
 
 
 
 
 
 
 
 
62c7319
8b973ee
 
 
 
62c7319
8b973ee
62c7319
 
8b973ee
 
 
 
 
 
 
 
 
 
62c7319
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import warnings
import torch.nn as nn
from roma.models.matcher import *
from roma.models.transformer import Block, TransformerDecoder, MemEffAttention
from roma.models.encoders import *


def roma_model(
    resolution, upsample_preds, device=None, weights=None, dinov2_weights=None, **kwargs
):
    # roma weights and dinov2 weights are loaded seperately, as dinov2 weights are not parameters
    torch.backends.cuda.matmul.allow_tf32 = True  # allow tf32 on matmul
    torch.backends.cudnn.allow_tf32 = True  # allow tf32 on cudnn
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="TypedStorage is deprecated"
    )
    gp_dim = 512
    feat_dim = 512
    decoder_dim = gp_dim + feat_dim
    cls_to_coord_res = 64
    coordinate_decoder = TransformerDecoder(
        nn.Sequential(
            *[Block(decoder_dim, 8, attn_class=MemEffAttention) for _ in range(5)]
        ),
        decoder_dim,
        cls_to_coord_res**2 + 1,
        is_classifier=True,
        amp=True,
        pos_enc=False,
    )
    dw = True
    hidden_blocks = 8
    kernel_size = 5
    displacement_emb = "linear"
    disable_local_corr_grad = True

    conv_refiner = nn.ModuleDict(
        {
            "16": ConvRefiner(
                2 * 512 + 128 + (2 * 7 + 1) ** 2,
                2 * 512 + 128 + (2 * 7 + 1) ** 2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=128,
                local_corr_radius=7,
                corr_in_other=True,
                amp=True,
                disable_local_corr_grad=disable_local_corr_grad,
                bn_momentum=0.01,
            ),
            "8": ConvRefiner(
                2 * 512 + 64 + (2 * 3 + 1) ** 2,
                2 * 512 + 64 + (2 * 3 + 1) ** 2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=64,
                local_corr_radius=3,
                corr_in_other=True,
                amp=True,
                disable_local_corr_grad=disable_local_corr_grad,
                bn_momentum=0.01,
            ),
            "4": ConvRefiner(
                2 * 256 + 32 + (2 * 2 + 1) ** 2,
                2 * 256 + 32 + (2 * 2 + 1) ** 2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=32,
                local_corr_radius=2,
                corr_in_other=True,
                amp=True,
                disable_local_corr_grad=disable_local_corr_grad,
                bn_momentum=0.01,
            ),
            "2": ConvRefiner(
                2 * 64 + 16,
                128 + 16,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=16,
                amp=True,
                disable_local_corr_grad=disable_local_corr_grad,
                bn_momentum=0.01,
            ),
            "1": ConvRefiner(
                2 * 9 + 6,
                24,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=6,
                amp=True,
                disable_local_corr_grad=disable_local_corr_grad,
                bn_momentum=0.01,
            ),
        }
    )
    kernel_temperature = 0.2
    learn_temperature = False
    no_cov = True
    kernel = CosKernel
    only_attention = False
    basis = "fourier"
    gp16 = GP(
        kernel,
        T=kernel_temperature,
        learn_temperature=learn_temperature,
        only_attention=only_attention,
        gp_dim=gp_dim,
        basis=basis,
        no_cov=no_cov,
    )
    gps = nn.ModuleDict({"16": gp16})
    proj16 = nn.Sequential(nn.Conv2d(1024, 512, 1, 1), nn.BatchNorm2d(512))
    proj8 = nn.Sequential(nn.Conv2d(512, 512, 1, 1), nn.BatchNorm2d(512))
    proj4 = nn.Sequential(nn.Conv2d(256, 256, 1, 1), nn.BatchNorm2d(256))
    proj2 = nn.Sequential(nn.Conv2d(128, 64, 1, 1), nn.BatchNorm2d(64))
    proj1 = nn.Sequential(nn.Conv2d(64, 9, 1, 1), nn.BatchNorm2d(9))
    proj = nn.ModuleDict(
        {
            "16": proj16,
            "8": proj8,
            "4": proj4,
            "2": proj2,
            "1": proj1,
        }
    )
    displacement_dropout_p = 0.0
    gm_warp_dropout_p = 0.0
    decoder = Decoder(
        coordinate_decoder,
        gps,
        proj,
        conv_refiner,
        detach=True,
        scales=["16", "8", "4", "2", "1"],
        displacement_dropout_p=displacement_dropout_p,
        gm_warp_dropout_p=gm_warp_dropout_p,
    )

    encoder = CNNandDinov2(
        cnn_kwargs=dict(pretrained=False, amp=True),
        amp=True,
        use_vgg=True,
        dinov2_weights=dinov2_weights,
    )
    h, w = resolution
    symmetric = True
    attenuate_cert = True
    matcher = RegressionMatcher(
        encoder,
        decoder,
        h=h,
        w=w,
        upsample_preds=upsample_preds,
        symmetric=symmetric,
        attenuate_cert=attenuate_cert,
        **kwargs
    ).to(device)
    matcher.load_state_dict(weights)
    return matcher