File size: 6,545 Bytes
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import random
from PIL import Image
import h5py
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, ConcatDataset

from dkm.utils import get_depth_tuple_transform_ops, get_tuple_transform_ops
import torchvision.transforms.functional as tvf
from dkm.utils.transforms import GeometricSequential
import kornia.augmentation as K


class MegadepthScene:
    def __init__(
        self,
        data_root,
        scene_info,
        ht=384,
        wt=512,
        min_overlap=0.0,
        shake_t=0,
        rot_prob=0.0,
        normalize=True,
    ) -> None:
        self.data_root = data_root
        self.image_paths = scene_info["image_paths"]
        self.depth_paths = scene_info["depth_paths"]
        self.intrinsics = scene_info["intrinsics"]
        self.poses = scene_info["poses"]
        self.pairs = scene_info["pairs"]
        self.overlaps = scene_info["overlaps"]
        threshold = self.overlaps > min_overlap
        self.pairs = self.pairs[threshold]
        self.overlaps = self.overlaps[threshold]
        if len(self.pairs) > 100000:
            pairinds = np.random.choice(
                np.arange(0, len(self.pairs)), 100000, replace=False
            )
            self.pairs = self.pairs[pairinds]
            self.overlaps = self.overlaps[pairinds]
        # counts, bins = np.histogram(self.overlaps,20)
        # print(counts)
        self.im_transform_ops = get_tuple_transform_ops(
            resize=(ht, wt), normalize=normalize
        )
        self.depth_transform_ops = get_depth_tuple_transform_ops(
            resize=(ht, wt), normalize=False
        )
        self.wt, self.ht = wt, ht
        self.shake_t = shake_t
        self.H_generator = GeometricSequential(K.RandomAffine(degrees=90, p=rot_prob))

    def load_im(self, im_ref, crop=None):
        im = Image.open(im_ref)
        return im

    def load_depth(self, depth_ref, crop=None):
        depth = np.array(h5py.File(depth_ref, "r")["depth"])
        return torch.from_numpy(depth)

    def __len__(self):
        return len(self.pairs)

    def scale_intrinsic(self, K, wi, hi):
        sx, sy = self.wt / wi, self.ht / hi
        sK = torch.tensor([[sx, 0, 0], [0, sy, 0], [0, 0, 1]])
        return sK @ K

    def rand_shake(self, *things):
        t = np.random.choice(range(-self.shake_t, self.shake_t + 1), size=2)
        return [
            tvf.affine(thing, angle=0.0, translate=list(t), scale=1.0, shear=[0.0, 0.0])
            for thing in things
        ], t

    def __getitem__(self, pair_idx):
        # read intrinsics of original size
        idx1, idx2 = self.pairs[pair_idx]
        K1 = torch.tensor(self.intrinsics[idx1].copy(), dtype=torch.float).reshape(3, 3)
        K2 = torch.tensor(self.intrinsics[idx2].copy(), dtype=torch.float).reshape(3, 3)

        # read and compute relative poses
        T1 = self.poses[idx1]
        T2 = self.poses[idx2]
        T_1to2 = torch.tensor(np.matmul(T2, np.linalg.inv(T1)), dtype=torch.float)[
            :4, :4
        ]  # (4, 4)

        # Load positive pair data
        im1, im2 = self.image_paths[idx1], self.image_paths[idx2]
        depth1, depth2 = self.depth_paths[idx1], self.depth_paths[idx2]
        im_src_ref = os.path.join(self.data_root, im1)
        im_pos_ref = os.path.join(self.data_root, im2)
        depth_src_ref = os.path.join(self.data_root, depth1)
        depth_pos_ref = os.path.join(self.data_root, depth2)
        # return torch.randn((1000,1000))
        im_src = self.load_im(im_src_ref)
        im_pos = self.load_im(im_pos_ref)
        depth_src = self.load_depth(depth_src_ref)
        depth_pos = self.load_depth(depth_pos_ref)

        # Recompute camera intrinsic matrix due to the resize
        K1 = self.scale_intrinsic(K1, im_src.width, im_src.height)
        K2 = self.scale_intrinsic(K2, im_pos.width, im_pos.height)
        # Process images
        im_src, im_pos = self.im_transform_ops((im_src, im_pos))
        depth_src, depth_pos = self.depth_transform_ops(
            (depth_src[None, None], depth_pos[None, None])
        )
        [im_src, im_pos, depth_src, depth_pos], t = self.rand_shake(
            im_src, im_pos, depth_src, depth_pos
        )
        im_src, Hq = self.H_generator(im_src[None])
        depth_src = self.H_generator.apply_transform(depth_src, Hq)
        K1[:2, 2] += t
        K2[:2, 2] += t
        K1 = Hq[0] @ K1
        data_dict = {
            "query": im_src[0],
            "query_identifier": self.image_paths[idx1].split("/")[-1].split(".jpg")[0],
            "support": im_pos,
            "support_identifier": self.image_paths[idx2]
            .split("/")[-1]
            .split(".jpg")[0],
            "query_depth": depth_src[0, 0],
            "support_depth": depth_pos[0, 0],
            "K1": K1,
            "K2": K2,
            "T_1to2": T_1to2,
        }
        return data_dict


class MegadepthBuilder:
    def __init__(self, data_root="data/megadepth") -> None:
        self.data_root = data_root
        self.scene_info_root = os.path.join(data_root, "prep_scene_info")
        self.all_scenes = os.listdir(self.scene_info_root)
        self.test_scenes = ["0017.npy", "0004.npy", "0048.npy", "0013.npy"]
        self.test_scenes_loftr = ["0015.npy", "0022.npy"]

    def build_scenes(self, split="train", min_overlap=0.0, **kwargs):
        if split == "train":
            scene_names = set(self.all_scenes) - set(self.test_scenes)
        elif split == "train_loftr":
            scene_names = set(self.all_scenes) - set(self.test_scenes_loftr)
        elif split == "test":
            scene_names = self.test_scenes
        elif split == "test_loftr":
            scene_names = self.test_scenes_loftr
        else:
            raise ValueError(f"Split {split} not available")
        scenes = []
        for scene_name in scene_names:
            scene_info = np.load(
                os.path.join(self.scene_info_root, scene_name), allow_pickle=True
            ).item()
            scenes.append(
                MegadepthScene(
                    self.data_root, scene_info, min_overlap=min_overlap, **kwargs
                )
            )
        return scenes

    def weight_scenes(self, concat_dataset, alpha=0.5):
        ns = []
        for d in concat_dataset.datasets:
            ns.append(len(d))
        ws = torch.cat([torch.ones(n) / n**alpha for n in ns])
        return ws


if __name__ == "__main__":
    mega_test = ConcatDataset(MegadepthBuilder().build_scenes(split="train"))
    mega_test[0]