File size: 4,990 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
 
 
 
404d2af
8b973ee
404d2af
 
 
 
8b973ee
 
 
 
 
 
 
 
 
 
404d2af
 
 
 
 
 
8b973ee
 
 
 
404d2af
8b973ee
 
 
 
404d2af
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
8b973ee
 
 
 
 
 
 
 
404d2af
8b973ee
 
 
 
 
 
 
 
 
404d2af
8b973ee
 
 
404d2af
8b973ee
 
 
 
 
 
 
404d2af
 
 
8b973ee
 
404d2af
 
 
8b973ee
 
 
 
404d2af
 
 
 
8b973ee
404d2af
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
 
8b973ee
 
404d2af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch
import numpy as np
import os, time, random
import argparse
from torch.utils.data import Dataset, DataLoader
from PIL import Image as PILImage

from model.model import InvISPNet
from dataset.FiveK_dataset import FiveKDatasetTest
from config.config import get_arguments

from utils.JPEG import DiffJPEG
from utils.commons import denorm, preprocess_test_patch
from tqdm import tqdm

os.system("nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp")
os.environ["CUDA_VISIBLE_DEVICES"] = str(
    np.argmax([int(x.split()[2]) for x in open("tmp", "r").readlines()])
)
# os.environ['CUDA_VISIBLE_DEVICES'] = '7'
os.system("rm tmp")

DiffJPEG = DiffJPEG(differentiable=True, quality=90).cuda()

parser = get_arguments()
parser.add_argument("--ckpt", type=str, help="Checkpoint path.")
parser.add_argument(
    "--out_path", type=str, default="./exps/", help="Path to save results. "
)
parser.add_argument(
    "--split_to_patch",
    dest="split_to_patch",
    action="store_true",
    help="Test on patch. ",
)
args = parser.parse_args()
print("Parsed arguments: {}".format(args))


ckpt_name = args.ckpt.split("/")[-1].split(".")[0]
if args.split_to_patch:
    os.makedirs(
        args.out_path + "%s/results_metric_%s/" % (args.task, ckpt_name), exist_ok=True
    )
    out_path = args.out_path + "%s/results_metric_%s/" % (args.task, ckpt_name)
else:
    os.makedirs(
        args.out_path + "%s/results_%s/" % (args.task, ckpt_name), exist_ok=True
    )
    out_path = args.out_path + "%s/results_%s/" % (args.task, ckpt_name)


def main(args):
    # ======================================define the model============================================
    net = InvISPNet(channel_in=3, channel_out=3, block_num=8)
    device = torch.device("cuda:0")

    net.to(device)
    net.eval()
    # load the pretrained weight if there exists one
    if os.path.isfile(args.ckpt):
        net.load_state_dict(torch.load(args.ckpt), strict=False)
        print("[INFO] Loaded checkpoint: {}".format(args.ckpt))

    print("[INFO] Start data load and preprocessing")
    RAWDataset = FiveKDatasetTest(opt=args)
    dataloader = DataLoader(
        RAWDataset, batch_size=1, shuffle=False, num_workers=0, drop_last=True
    )

    print("[INFO] Start test...")
    for i_batch, sample_batched in enumerate(tqdm(dataloader)):
        step_time = time.time()

        input, target_rgb, target_raw = (
            sample_batched["input_raw"].to(device),
            sample_batched["target_rgb"].to(device),
            sample_batched["target_raw"].to(device),
        )
        file_name = sample_batched["file_name"][0]

        if args.split_to_patch:
            input_list, target_rgb_list, target_raw_list = preprocess_test_patch(
                input, target_rgb, target_raw
            )
        else:
            # remove [:,:,::2,::2] if you have enough GPU memory to test the full resolution
            input_list, target_rgb_list, target_raw_list = (
                [input[:, :, ::2, ::2]],
                [target_rgb[:, :, ::2, ::2]],
                [target_raw[:, :, ::2, ::2]],
            )

        for i_patch in range(len(input_list)):
            input_patch = input_list[i_patch]
            target_rgb_patch = target_rgb_list[i_patch]
            target_raw_patch = target_raw_list[i_patch]

            with torch.no_grad():
                reconstruct_rgb = net(input_patch)
                reconstruct_rgb = torch.clamp(reconstruct_rgb, 0, 1)

            pred_rgb = reconstruct_rgb.detach().permute(0, 2, 3, 1)
            target_rgb_patch = target_rgb_patch.permute(0, 2, 3, 1)

            pred_rgb = denorm(pred_rgb, 255)
            target_rgb_patch = denorm(target_rgb_patch, 255)
            pred_rgb = pred_rgb.cpu().numpy()
            target_rgb_patch = target_rgb_patch.cpu().numpy().astype(np.float32)

            # print(type(pred_rgb))
            pred = PILImage.fromarray(np.uint8(pred_rgb[0, :, :, :]))
            tar_pred = PILImage.fromarray(
                np.hstack(
                    (
                        np.uint8(target_rgb_patch[0, :, :, :]),
                        np.uint8(pred_rgb[0, :, :, :]),
                    )
                )
            )

            tar = PILImage.fromarray(np.uint8(target_rgb_patch[0, :, :, :]))

            pred.save(
                out_path + "pred_%s_%05d.jpg" % (file_name, i_patch),
                quality=90,
                subsampling=1,
            )
            tar.save(
                out_path + "tar_%s_%05d.jpg" % (file_name, i_patch),
                quality=90,
                subsampling=1,
            )
            tar_pred.save(
                out_path + "gt_pred_%s_%05d.jpg" % (file_name, i_patch),
                quality=90,
                subsampling=1,
            )

            del reconstruct_rgb


if __name__ == "__main__":
    torch.set_num_threads(4)
    main(args)