File size: 4,695 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
 
 
 
404d2af
8b973ee
404d2af
 
 
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
8b973ee
 
 
404d2af
 
 
 
8b973ee
 
404d2af
8b973ee
404d2af
 
8b973ee
404d2af
 
 
 
 
 
8b973ee
 
 
 
404d2af
 
8b973ee
 
404d2af
8b973ee
 
 
 
 
 
 
 
404d2af
 
 
 
8b973ee
 
404d2af
8b973ee
404d2af
8b973ee
 
 
 
 
 
 
404d2af
 
 
 
 
8b973ee
404d2af
8b973ee
404d2af
 
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
8b973ee
404d2af
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import os, time, random
import argparse
import json

import torch.nn.functional as F
import torch
from torch.utils.data import Dataset, DataLoader
from torch.optim import lr_scheduler

from model.model import InvISPNet
from dataset.FiveK_dataset import FiveKDatasetTrain
from config.config import get_arguments

from utils.JPEG import DiffJPEG

os.system("nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp")
os.environ["CUDA_VISIBLE_DEVICES"] = str(
    np.argmax([int(x.split()[2]) for x in open("tmp", "r").readlines()])
)
# os.environ['CUDA_VISIBLE_DEVICES'] = "1"
os.system("rm tmp")

DiffJPEG = DiffJPEG(differentiable=True, quality=90).cuda()

parser = get_arguments()
parser.add_argument(
    "--out_path", type=str, default="./exps/", help="Path to save checkpoint. "
)
parser.add_argument(
    "--resume", dest="resume", action="store_true", help="Resume training. "
)
parser.add_argument(
    "--loss",
    type=str,
    default="L1",
    choices=["L1", "L2"],
    help="Choose which loss function to use. ",
)
parser.add_argument("--lr", type=float, default=0.0001, help="Learning rate")
parser.add_argument(
    "--aug", dest="aug", action="store_true", help="Use data augmentation."
)
args = parser.parse_args()
print("Parsed arguments: {}".format(args))

os.makedirs(args.out_path, exist_ok=True)
os.makedirs(args.out_path + "%s" % args.task, exist_ok=True)
os.makedirs(args.out_path + "%s/checkpoint" % args.task, exist_ok=True)

with open(args.out_path + "%s/commandline_args.yaml" % args.task, "w") as f:
    json.dump(args.__dict__, f, indent=2)


def main(args):
    # ======================================define the model======================================
    net = InvISPNet(channel_in=3, channel_out=3, block_num=8)
    net.cuda()
    # load the pretrained weight if there exists one
    if args.resume:
        net.load_state_dict(
            torch.load(args.out_path + "%s/checkpoint/latest.pth" % args.task)
        )
        print("[INFO] loaded " + args.out_path + "%s/checkpoint/latest.pth" % args.task)

    optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)
    scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[50, 80], gamma=0.5)

    print("[INFO] Start data loading and preprocessing")
    RAWDataset = FiveKDatasetTrain(opt=args)
    dataloader = DataLoader(
        RAWDataset,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=0,
        drop_last=True,
    )

    print("[INFO] Start to train")
    step = 0
    for epoch in range(0, 300):
        epoch_time = time.time()

        for i_batch, sample_batched in enumerate(dataloader):
            step_time = time.time()

            input, target_rgb, target_raw = (
                sample_batched["input_raw"].cuda(),
                sample_batched["target_rgb"].cuda(),
                sample_batched["target_raw"].cuda(),
            )

            reconstruct_rgb = net(input)
            reconstruct_rgb = torch.clamp(reconstruct_rgb, 0, 1)
            rgb_loss = F.l1_loss(reconstruct_rgb, target_rgb)
            reconstruct_rgb = DiffJPEG(reconstruct_rgb)
            reconstruct_raw = net(reconstruct_rgb, rev=True)
            raw_loss = F.l1_loss(reconstruct_raw, target_raw)

            loss = args.rgb_weight * rgb_loss + raw_loss

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            print(
                "task: %s Epoch: %d Step: %d || loss: %.5f raw_loss: %.5f rgb_loss: %.5f || lr: %f time: %f"
                % (
                    args.task,
                    epoch,
                    step,
                    loss.detach().cpu().numpy(),
                    raw_loss.detach().cpu().numpy(),
                    rgb_loss.detach().cpu().numpy(),
                    optimizer.param_groups[0]["lr"],
                    time.time() - step_time,
                )
            )
            step += 1

        torch.save(
            net.state_dict(), args.out_path + "%s/checkpoint/latest.pth" % args.task
        )
        if (epoch + 1) % 10 == 0:
            # os.makedirs(args.out_path+"%s/checkpoint/%04d"%(args.task,epoch), exist_ok=True)
            torch.save(
                net.state_dict(),
                args.out_path + "%s/checkpoint/%04d.pth" % (args.task, epoch),
            )
            print(
                "[INFO] Successfully saved "
                + args.out_path
                + "%s/checkpoint/%04d.pth" % (args.task, epoch)
            )
        scheduler.step()

        print("[INFO] Epoch time: ", time.time() - epoch_time, "task: ", args.task)


if __name__ == "__main__":

    torch.set_num_threads(4)
    main(args)