File size: 14,740 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import pdb
from PIL import Image
import numpy as np
import torch
import torchvision.transforms as tvf
from tools.transforms import instanciate_transformation
from tools.transforms_tools import persp_apply
RGB_mean = [0.485, 0.456, 0.406]
RGB_std = [0.229, 0.224, 0.225]
norm_RGB = tvf.Compose([tvf.ToTensor(), tvf.Normalize(mean=RGB_mean, std=RGB_std)])
class PairLoader:
"""On-the-fly jittering of pairs of image with dense pixel ground-truth correspondences.
crop: random crop applied to both images
scale: random scaling applied to img2
distort: random ditorsion applied to img2
self[idx] returns a dictionary with keys: img1, img2, aflow, mask
- img1: cropped original
- img2: distorted cropped original
- aflow: 'absolute' optical flow = (x,y) position of each pixel from img1 in img2
- mask: (binary image) valid pixels of img1
"""
def __init__(
self,
dataset,
crop="",
scale="",
distort="",
norm=norm_RGB,
what="aflow mask",
idx_as_rng_seed=False,
):
assert hasattr(dataset, "npairs")
assert hasattr(dataset, "get_pair")
self.dataset = dataset
self.distort = instanciate_transformation(distort)
self.crop = instanciate_transformation(crop)
self.norm = instanciate_transformation(norm)
self.scale = instanciate_transformation(scale)
self.idx_as_rng_seed = idx_as_rng_seed # to remove randomness
self.what = what.split() if isinstance(what, str) else what
self.n_samples = 5 # number of random trials per image
def __len__(self):
assert len(self.dataset) == self.dataset.npairs, pdb.set_trace() # and not nimg
return len(self.dataset)
def __repr__(self):
fmt_str = "PairLoader\n"
fmt_str += repr(self.dataset)
fmt_str += " npairs: %d\n" % self.dataset.npairs
short_repr = (
lambda s: repr(s).strip().replace("\n", ", ")[14:-1].replace(" ", " ")
)
fmt_str += " Distort: %s\n" % short_repr(self.distort)
fmt_str += " Crop: %s\n" % short_repr(self.crop)
fmt_str += " Norm: %s\n" % short_repr(self.norm)
return fmt_str
def __getitem__(self, i):
# from time import time as now; t0 = now()
if self.idx_as_rng_seed:
import random
random.seed(i)
np.random.seed(i)
# Retrieve an image pair and their absolute flow
img_a, img_b, metadata = self.dataset.get_pair(i, self.what)
# aflow contains pixel coordinates indicating where each
# pixel from the left image ended up in the right image
# as (x,y) pairs, but its shape is (H,W,2)
aflow = np.float32(metadata["aflow"])
mask = metadata.get("mask", np.ones(aflow.shape[:2], np.uint8))
# apply transformations to the second image
img_b = {"img": img_b, "persp": (1, 0, 0, 0, 1, 0, 0, 0)}
if self.scale:
img_b = self.scale(img_b)
if self.distort:
img_b = self.distort(img_b)
# apply the same transformation to the flow
aflow[:] = persp_apply(img_b["persp"], aflow.reshape(-1, 2)).reshape(
aflow.shape
)
corres = None
if "corres" in metadata:
corres = np.float32(metadata["corres"])
corres[:, 1] = persp_apply(img_b["persp"], corres[:, 1])
# apply the same transformation to the homography
homography = None
if "homography" in metadata:
homography = np.float32(metadata["homography"])
# p_b = homography * p_a
persp = np.float32(img_b["persp"] + (1,)).reshape(3, 3)
homography = persp @ homography
# determine crop size
img_b = img_b["img"]
crop_size = self.crop({"imsize": (10000, 10000)})["imsize"]
output_size_a = min(img_a.size, crop_size)
output_size_b = min(img_b.size, crop_size)
img_a = np.array(img_a)
img_b = np.array(img_b)
ah, aw, p1 = img_a.shape
bh, bw, p2 = img_b.shape
assert p1 == 3
assert p2 == 3
assert aflow.shape == (ah, aw, 2)
assert mask.shape == (ah, aw)
# Let's start by computing the scale of the
# optical flow and applying a median filter:
dx = np.gradient(aflow[:, :, 0])
dy = np.gradient(aflow[:, :, 1])
scale = np.sqrt(np.clip(np.abs(dx[1] * dy[0] - dx[0] * dy[1]), 1e-16, 1e16))
accu2 = np.zeros((16, 16), bool)
Q = lambda x, w: np.int32(16 * (x - w.start) / (w.stop - w.start))
def window1(x, size, w):
l = x - int(0.5 + size / 2)
r = l + int(0.5 + size)
if l < 0:
l, r = (0, r - l)
if r > w:
l, r = (l + w - r, w)
if l < 0:
l, r = 0, w # larger than width
return slice(l, r)
def window(cx, cy, win_size, scale, img_shape):
return (
window1(cy, win_size[1] * scale, img_shape[0]),
window1(cx, win_size[0] * scale, img_shape[1]),
)
n_valid_pixel = mask.sum()
sample_w = mask / (1e-16 + n_valid_pixel)
def sample_valid_pixel():
n = np.random.choice(sample_w.size, p=sample_w.ravel())
y, x = np.unravel_index(n, sample_w.shape)
return x, y
# Find suitable left and right windows
trials = 0 # take the best out of few trials
best = -np.inf, None
for _ in range(50 * self.n_samples):
if trials >= self.n_samples:
break # finished!
# pick a random valid point from the first image
if n_valid_pixel == 0:
break
c1x, c1y = sample_valid_pixel()
# Find in which position the center of the left
# window ended up being placed in the right image
c2x, c2y = (aflow[c1y, c1x] + 0.5).astype(np.int32)
if not (0 <= c2x < bw and 0 <= c2y < bh):
continue
# Get the flow scale
sigma = scale[c1y, c1x]
# Determine sampling windows
if 0.2 < sigma < 1:
win1 = window(c1x, c1y, output_size_a, 1 / sigma, img_a.shape)
win2 = window(c2x, c2y, output_size_b, 1, img_b.shape)
elif 1 <= sigma < 5:
win1 = window(c1x, c1y, output_size_a, 1, img_a.shape)
win2 = window(c2x, c2y, output_size_b, sigma, img_b.shape)
else:
continue # bad scale
# compute a score based on the flow
x2, y2 = aflow[win1].reshape(-1, 2).T.astype(np.int32)
# Check the proportion of valid flow vectors
valid = (
(win2[1].start <= x2)
& (x2 < win2[1].stop)
& (win2[0].start <= y2)
& (y2 < win2[0].stop)
)
score1 = (valid * mask[win1].ravel()).mean()
# check the coverage of the second window
accu2[:] = False
accu2[Q(y2[valid], win2[0]), Q(x2[valid], win2[1])] = True
score2 = accu2.mean()
# Check how many hits we got
score = min(score1, score2)
trials += 1
if score > best[0]:
best = score, win1, win2
if None in best: # counldn't find a good window
img_a = np.zeros(output_size_a[::-1] + (3,), dtype=np.uint8)
img_b = np.zeros(output_size_b[::-1] + (3,), dtype=np.uint8)
aflow = np.nan * np.ones((2,) + output_size_a[::-1], dtype=np.float32)
homography = np.nan * np.ones((3, 3), dtype=np.float32)
else:
win1, win2 = best[1:]
img_a = img_a[win1]
img_b = img_b[win2]
aflow = aflow[win1] - np.float32([[[win2[1].start, win2[0].start]]])
mask = mask[win1]
aflow[~mask.view(bool)] = np.nan # mask bad pixels!
aflow = aflow.transpose(2, 0, 1) # --> (2,H,W)
if corres is not None:
corres[:, 0] -= (win1[1].start, win1[0].start)
corres[:, 1] -= (win2[1].start, win2[0].start)
if homography is not None:
trans1 = np.eye(3, dtype=np.float32)
trans1[:2, 2] = (win1[1].start, win1[0].start)
trans2 = np.eye(3, dtype=np.float32)
trans2[:2, 2] = (-win2[1].start, -win2[0].start)
homography = trans2 @ homography @ trans1
homography /= homography[2, 2]
# rescale if necessary
if img_a.shape[:2][::-1] != output_size_a:
sx, sy = (np.float32(output_size_a) - 1) / (
np.float32(img_a.shape[:2][::-1]) - 1
)
img_a = np.asarray(
Image.fromarray(img_a).resize(output_size_a, Image.ANTIALIAS)
)
mask = np.asarray(
Image.fromarray(mask).resize(output_size_a, Image.NEAREST)
)
afx = Image.fromarray(aflow[0]).resize(output_size_a, Image.NEAREST)
afy = Image.fromarray(aflow[1]).resize(output_size_a, Image.NEAREST)
aflow = np.stack((np.float32(afx), np.float32(afy)))
if corres is not None:
corres[:, 0] *= (sx, sy)
if homography is not None:
homography = homography @ np.diag(np.float32([1 / sx, 1 / sy, 1]))
homography /= homography[2, 2]
if img_b.shape[:2][::-1] != output_size_b:
sx, sy = (np.float32(output_size_b) - 1) / (
np.float32(img_b.shape[:2][::-1]) - 1
)
img_b = np.asarray(
Image.fromarray(img_b).resize(output_size_b, Image.ANTIALIAS)
)
aflow *= [[[sx]], [[sy]]]
if corres is not None:
corres[:, 1] *= (sx, sy)
if homography is not None:
homography = np.diag(np.float32([sx, sy, 1])) @ homography
homography /= homography[2, 2]
assert aflow.dtype == np.float32, pdb.set_trace()
assert homography is None or homography.dtype == np.float32, pdb.set_trace()
if "flow" in self.what:
H, W = img_a.shape[:2]
mgrid = np.mgrid[0:H, 0:W][::-1].astype(np.float32)
flow = aflow - mgrid
result = dict(img1=self.norm(img_a), img2=self.norm(img_b))
for what in self.what:
try:
result[what] = eval(what)
except NameError:
pass
return result
def threaded_loader(loader, iscuda, threads, batch_size=1, shuffle=True):
"""Get a data loader, given the dataset and some parameters.
Parameters
----------
loader : object[i] returns the i-th training example.
iscuda : bool
batch_size : int
threads : int
shuffle : int
Returns
-------
a multi-threaded pytorch loader.
"""
return torch.utils.data.DataLoader(
loader,
batch_size=batch_size,
shuffle=shuffle,
sampler=None,
num_workers=threads,
pin_memory=iscuda,
collate_fn=collate,
)
def collate(batch, _use_shared_memory=True):
"""Puts each data field into a tensor with outer dimension batch size.
Copied from https://github.com/pytorch in torch/utils/data/_utils/collate.py
"""
import re
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
if _use_shared_memory:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.stack(batch, 0, out=out)
elif (
elem_type.__module__ == "numpy"
and elem_type.__name__ != "str_"
and elem_type.__name__ != "string_"
):
elem = batch[0]
assert elem_type.__name__ == "ndarray"
# array of string classes and object
if re.search("[SaUO]", elem.dtype.str) is not None:
raise TypeError(error_msg.format(elem.dtype))
batch = [torch.from_numpy(b) for b in batch]
try:
return torch.stack(batch, 0)
except RuntimeError:
return batch
elif batch[0] is None:
return list(batch)
elif isinstance(batch[0], int):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], str):
return batch
elif isinstance(batch[0], dict):
return {key: collate([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], (tuple, list)):
transposed = zip(*batch)
return [collate(samples) for samples in transposed]
raise TypeError((error_msg.format(type(batch[0]))))
def tensor2img(tensor, model=None):
"""convert back a torch/numpy tensor to a PIL Image
by undoing the ToTensor() and Normalize() transforms.
"""
mean = norm_RGB.transforms[1].mean
std = norm_RGB.transforms[1].std
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
res = np.uint8(np.clip(255 * ((tensor.transpose(1, 2, 0) * std) + mean), 0, 255))
from PIL import Image
return Image.fromarray(res)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Tool to debug/visualize the data loader")
parser.add_argument(
"dataloader", type=str, help="command to create the data loader"
)
args = parser.parse_args()
from datasets import *
auto_pairs = lambda db: SyntheticPairDataset(
db,
"RandomScale(256,1024,can_upscale=True)",
"RandomTilting(0.5), PixelNoise(25)",
)
loader = eval(args.dataloader)
print("Data loader =", loader)
from tools.viz import show_flow
for data in loader:
aflow = data["aflow"]
H, W = aflow.shape[-2:]
flow = (aflow - np.mgrid[:H, :W][::-1]).transpose(1, 2, 0)
show_flow(tensor2img(data["img1"]), tensor2img(data["img2"]), flow)
|