File size: 5,006 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
8b973ee
 
 
 
404d2af
8b973ee
404d2af
 
 
 
8b973ee
 
404d2af
 
 
8b973ee
 
 
404d2af
 
 
 
 
8b973ee
 
 
404d2af
8b973ee
404d2af
 
 
8b973ee
 
404d2af
 
 
 
8b973ee
 
 
404d2af
 
 
 
 
 
 
8b973ee
 
 
 
 
 
 
404d2af
 
8b973ee
404d2af
8b973ee
404d2af
 
 
8b973ee
 
404d2af
 
 
 
8b973ee
404d2af
 
 
8b973ee
 
 
 
404d2af
 
 
 
 
8b973ee
 
404d2af
 
 
 
8b973ee
 
404d2af
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
Some useful functions for dataset pre-processing
"""
import cv2
import numpy as np
import shapely.geometry as sg

from ..synthetic_util import get_line_map
from . import homographic_transforms as homoaug


def random_scaling(image, junctions, line_map, scale=1.0, h_crop=0, w_crop=0):
    H, W = image.shape[:2]
    H_scale, W_scale = round(H * scale), round(W * scale)

    # Nothing to do if the scale is too close to 1
    if H_scale == H and W_scale == W:
        return (image, junctions, line_map, np.ones([H, W], dtype=np.int))

    # Zoom-in => resize and random crop
    if scale >= 1.0:
        image_big = cv2.resize(
            image, (W_scale, H_scale), interpolation=cv2.INTER_LINEAR
        )
        # Crop the image
        image = image_big[h_crop : h_crop + H, w_crop : w_crop + W, ...]
        valid_mask = np.ones([H, W], dtype=np.int)

        # Process junctions
        junctions, line_map = process_junctions_and_line_map(
            h_crop, w_crop, H, W, H_scale, W_scale, junctions, line_map, "zoom-in"
        )
    # Zoom-out => resize and pad
    else:
        image_shape_raw = image.shape
        image_small = cv2.resize(
            image, (W_scale, H_scale), interpolation=cv2.INTER_AREA
        )
        # Decide the pasting location
        h_start = round((H - H_scale) / 2)
        w_start = round((W - W_scale) / 2)
        # Paste the image to the middle
        image = np.zeros(image_shape_raw, dtype=np.float)
        image[
            h_start : h_start + H_scale, w_start : w_start + W_scale, ...
        ] = image_small
        valid_mask = np.zeros([H, W], dtype=np.int)
        valid_mask[h_start : h_start + H_scale, w_start : w_start + W_scale] = 1

        # Process the junctions
        junctions, line_map = process_junctions_and_line_map(
            h_start, w_start, H, W, H_scale, W_scale, junctions, line_map, "zoom-out"
        )

    return image, junctions, line_map, valid_mask


def process_junctions_and_line_map(
    h_start, w_start, H, W, H_scale, W_scale, junctions, line_map, mode="zoom-in"
):
    if mode == "zoom-in":
        junctions[:, 0] = junctions[:, 0] * H_scale / H
        junctions[:, 1] = junctions[:, 1] * W_scale / W
        line_segments = homoaug.convert_to_line_segments(junctions, line_map)
        # Crop segments to the new boundaries
        line_segments_new = np.zeros([0, 4])
        image_poly = sg.Polygon(
            [
                [w_start, h_start],
                [w_start + W, h_start],
                [w_start + W, h_start + H],
                [w_start, h_start + H],
            ]
        )
        for idx in range(line_segments.shape[0]):
            # Get the line segment
            seg_raw = line_segments[idx, :]  # in HW format.
            # Convert to shapely line (flip to xy format)
            seg = sg.LineString([np.flip(seg_raw[:2]), np.flip(seg_raw[2:])])
            # The line segment is just inside the image.
            if seg.intersection(image_poly) == seg:
                line_segments_new = np.concatenate(
                    (line_segments_new, seg_raw[None, ...]), axis=0
                )
            # Intersect with the image.
            elif seg.intersects(image_poly):
                # Check intersection
                try:
                    p = np.array(seg.intersection(image_poly).coords).reshape([-1, 4])
                # If intersect at exact one point, just continue.
                except:
                    continue
                segment = np.concatenate(
                    [np.flip(p[0, :2]), np.flip(p[0, 2:], axis=0)]
                )[None, ...]
                line_segments_new = np.concatenate((line_segments_new, segment), axis=0)
            else:
                continue
        line_segments_new = (np.round(line_segments_new)).astype(np.int)
        # Filter segments with 0 length
        segment_lens = np.linalg.norm(
            line_segments_new[:, :2] - line_segments_new[:, 2:], axis=-1
        )
        seg_mask = segment_lens != 0
        line_segments_new = line_segments_new[seg_mask, :]
        # Convert back to junctions and line_map
        junctions_new = np.concatenate(
            (line_segments_new[:, :2], line_segments_new[:, 2:]), axis=0
        )
        if junctions_new.shape[0] == 0:
            junctions_new = np.zeros([0, 2])
            line_map = np.zeros([0, 0])
        else:
            junctions_new = np.unique(junctions_new, axis=0)
            # Generate line map from points and segments
            line_map = get_line_map(junctions_new, line_segments_new).astype(np.int)
        junctions_new[:, 0] -= h_start
        junctions_new[:, 1] -= w_start
        junctions = junctions_new
    elif mode == "zoom-out":
        # Process the junctions
        junctions[:, 0] = (junctions[:, 0] * H_scale / H) + h_start
        junctions[:, 1] = (junctions[:, 1] * W_scale / W) + w_start
    else:
        raise ValueError("[Error] unknown mode...")

    return junctions, line_map