File size: 7,449 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""
Hourglass network, taken from https://github.com/zhou13/lcnn
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = ["HourglassNet", "hg"]
class MultitaskHead(nn.Module):
def __init__(self, input_channels, num_class):
super(MultitaskHead, self).__init__()
m = int(input_channels / 4)
head_size = [[2], [1], [2]]
heads = []
for output_channels in sum(head_size, []):
heads.append(
nn.Sequential(
nn.Conv2d(input_channels, m, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(m, output_channels, kernel_size=1),
)
)
self.heads = nn.ModuleList(heads)
assert num_class == sum(sum(head_size, []))
def forward(self, x):
return torch.cat([head(x) for head in self.heads], dim=1)
class Bottleneck2D(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck2D, self).__init__()
self.bn1 = nn.BatchNorm2d(inplanes)
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1)
self.bn3 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.bn1(x)
out = self.relu(out)
out = self.conv1(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn3(out)
out = self.relu(out)
out = self.conv3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
return out
class Hourglass(nn.Module):
def __init__(self, block, num_blocks, planes, depth):
super(Hourglass, self).__init__()
self.depth = depth
self.block = block
self.hg = self._make_hour_glass(block, num_blocks, planes, depth)
def _make_residual(self, block, num_blocks, planes):
layers = []
for i in range(0, num_blocks):
layers.append(block(planes * block.expansion, planes))
return nn.Sequential(*layers)
def _make_hour_glass(self, block, num_blocks, planes, depth):
hg = []
for i in range(depth):
res = []
for j in range(3):
res.append(self._make_residual(block, num_blocks, planes))
if i == 0:
res.append(self._make_residual(block, num_blocks, planes))
hg.append(nn.ModuleList(res))
return nn.ModuleList(hg)
def _hour_glass_forward(self, n, x):
up1 = self.hg[n - 1][0](x)
low1 = F.max_pool2d(x, 2, stride=2)
low1 = self.hg[n - 1][1](low1)
if n > 1:
low2 = self._hour_glass_forward(n - 1, low1)
else:
low2 = self.hg[n - 1][3](low1)
low3 = self.hg[n - 1][2](low2)
# up2 = F.interpolate(low3, scale_factor=2)
up2 = F.interpolate(low3, size=up1.shape[2:])
out = up1 + up2
return out
def forward(self, x):
return self._hour_glass_forward(self.depth, x)
class HourglassNet(nn.Module):
"""Hourglass model from Newell et al ECCV 2016"""
def __init__(
self, block, head, depth, num_stacks, num_blocks, num_classes, input_channels
):
super(HourglassNet, self).__init__()
self.inplanes = 64
self.num_feats = 128
self.num_stacks = num_stacks
self.conv1 = nn.Conv2d(
input_channels, self.inplanes, kernel_size=7, stride=2, padding=3
)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_residual(block, self.inplanes, 1)
self.layer2 = self._make_residual(block, self.inplanes, 1)
self.layer3 = self._make_residual(block, self.num_feats, 1)
self.maxpool = nn.MaxPool2d(2, stride=2)
# build hourglass modules
ch = self.num_feats * block.expansion
# vpts = []
hg, res, fc, score, fc_, score_ = [], [], [], [], [], []
for i in range(num_stacks):
hg.append(Hourglass(block, num_blocks, self.num_feats, depth))
res.append(self._make_residual(block, self.num_feats, num_blocks))
fc.append(self._make_fc(ch, ch))
score.append(head(ch, num_classes))
# vpts.append(VptsHead(ch))
# vpts.append(nn.Linear(ch, 9))
# score.append(nn.Conv2d(ch, num_classes, kernel_size=1))
# score[i].bias.data[0] += 4.6
# score[i].bias.data[2] += 4.6
if i < num_stacks - 1:
fc_.append(nn.Conv2d(ch, ch, kernel_size=1))
score_.append(nn.Conv2d(num_classes, ch, kernel_size=1))
self.hg = nn.ModuleList(hg)
self.res = nn.ModuleList(res)
self.fc = nn.ModuleList(fc)
self.score = nn.ModuleList(score)
# self.vpts = nn.ModuleList(vpts)
self.fc_ = nn.ModuleList(fc_)
self.score_ = nn.ModuleList(score_)
def _make_residual(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
)
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _make_fc(self, inplanes, outplanes):
bn = nn.BatchNorm2d(inplanes)
conv = nn.Conv2d(inplanes, outplanes, kernel_size=1)
return nn.Sequential(conv, bn, self.relu)
def forward(self, x):
out = []
# out_vps = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.maxpool(x)
x = self.layer2(x)
x = self.layer3(x)
for i in range(self.num_stacks):
y = self.hg[i](x)
y = self.res[i](y)
y = self.fc[i](y)
score = self.score[i](y)
# pre_vpts = F.adaptive_avg_pool2d(x, (1, 1))
# pre_vpts = pre_vpts.reshape(-1, 256)
# vpts = self.vpts[i](x)
out.append(score)
# out_vps.append(vpts)
if i < self.num_stacks - 1:
fc_ = self.fc_[i](y)
score_ = self.score_[i](score)
x = x + fc_ + score_
return out[::-1], y # , out_vps[::-1]
def hg(**kwargs):
model = HourglassNet(
Bottleneck2D,
head=kwargs.get("head", lambda c_in, c_out: nn.Conv2D(c_in, c_out, 1)),
depth=kwargs["depth"],
num_stacks=kwargs["num_stacks"],
num_blocks=kwargs["num_blocks"],
num_classes=kwargs["num_classes"],
input_channels=kwargs["input_channels"],
)
return model
|