File size: 20,648 Bytes
e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee e73df10 8b973ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
# Unpublished Copyright (c) 2020
# Magic Leap, Inc., All Rights Reserved.
#
# NOTICE: All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law. Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY. Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure of this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
# Originating Authors: Paul-Edouard Sarlin
# Daniel DeTone
# Tomasz Malisiewicz
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%
from pathlib import Path
import time
from collections import OrderedDict
from threading import Thread
import numpy as np
import cv2
import torch
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use("Agg")
class AverageTimer:
"""Class to help manage printing simple timing of code execution."""
def __init__(self, smoothing=0.3, newline=False):
self.smoothing = smoothing
self.newline = newline
self.times = OrderedDict()
self.will_print = OrderedDict()
self.reset()
def reset(self):
now = time.time()
self.start = now
self.last_time = now
for name in self.will_print:
self.will_print[name] = False
def update(self, name="default"):
now = time.time()
dt = now - self.last_time
if name in self.times:
dt = self.smoothing * dt + (1 - self.smoothing) * self.times[name]
self.times[name] = dt
self.will_print[name] = True
self.last_time = now
def print(self, text="Timer"):
total = 0.0
print("[{}]".format(text), end=" ")
for key in self.times:
val = self.times[key]
if self.will_print[key]:
print("%s=%.3f" % (key, val), end=" ")
total += val
print("total=%.3f sec {%.1f FPS}" % (total, 1.0 / total), end=" ")
if self.newline:
print(flush=True)
else:
print(end="\r", flush=True)
self.reset()
class VideoStreamer:
"""Class to help process image streams. Four types of possible inputs:"
1.) USB Webcam.
2.) An IP camera
3.) A directory of images (files in directory matching 'image_glob').
4.) A video file, such as an .mp4 or .avi file.
"""
def __init__(self, basedir, resize, skip, image_glob, max_length=1000000):
self._ip_grabbed = False
self._ip_running = False
self._ip_camera = False
self._ip_image = None
self._ip_index = 0
self.cap = []
self.camera = True
self.video_file = False
self.listing = []
self.resize = resize
self.interp = cv2.INTER_AREA
self.i = 0
self.skip = skip
self.max_length = max_length
if isinstance(basedir, int) or basedir.isdigit():
print("==> Processing USB webcam input: {}".format(basedir))
self.cap = cv2.VideoCapture(int(basedir))
self.listing = range(0, self.max_length)
elif basedir.startswith(("http", "rtsp")):
print("==> Processing IP camera input: {}".format(basedir))
self.cap = cv2.VideoCapture(basedir)
self.start_ip_camera_thread()
self._ip_camera = True
self.listing = range(0, self.max_length)
elif Path(basedir).is_dir():
print("==> Processing image directory input: {}".format(basedir))
self.listing = list(Path(basedir).glob(image_glob[0]))
for j in range(1, len(image_glob)):
image_path = list(Path(basedir).glob(image_glob[j]))
self.listing = self.listing + image_path
self.listing.sort()
self.listing = self.listing[:: self.skip]
self.max_length = np.min([self.max_length, len(self.listing)])
if self.max_length == 0:
raise IOError("No images found (maybe bad 'image_glob' ?)")
self.listing = self.listing[: self.max_length]
self.camera = False
elif Path(basedir).exists():
print("==> Processing video input: {}".format(basedir))
self.cap = cv2.VideoCapture(basedir)
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
self.listing = range(0, num_frames)
self.listing = self.listing[:: self.skip]
self.video_file = True
self.max_length = np.min([self.max_length, len(self.listing)])
self.listing = self.listing[: self.max_length]
else:
raise ValueError('VideoStreamer input "{}" not recognized.'.format(basedir))
if self.camera and not self.cap.isOpened():
raise IOError("Could not read camera")
def load_image(self, impath):
"""Read image as grayscale and resize to img_size.
Inputs
impath: Path to input image.
Returns
grayim: uint8 numpy array sized H x W.
"""
grayim = cv2.imread(impath, 0)
if grayim is None:
raise Exception("Error reading image %s" % impath)
w, h = grayim.shape[1], grayim.shape[0]
w_new, h_new = process_resize(w, h, self.resize)
grayim = cv2.resize(grayim, (w_new, h_new), interpolation=self.interp)
return grayim
def next_frame(self):
"""Return the next frame, and increment internal counter.
Returns
image: Next H x W image.
status: True or False depending whether image was loaded.
"""
if self.i == self.max_length:
return (None, False)
if self.camera:
if self._ip_camera:
# Wait for first image, making sure we haven't exited
while self._ip_grabbed is False and self._ip_exited is False:
time.sleep(0.001)
ret, image = self._ip_grabbed, self._ip_image.copy()
if ret is False:
self._ip_running = False
else:
ret, image = self.cap.read()
if ret is False:
print("VideoStreamer: Cannot get image from camera")
return (None, False)
w, h = image.shape[1], image.shape[0]
if self.video_file:
self.cap.set(cv2.CAP_PROP_POS_FRAMES, self.listing[self.i])
w_new, h_new = process_resize(w, h, self.resize)
image = cv2.resize(image, (w_new, h_new), interpolation=self.interp)
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
else:
image_file = str(self.listing[self.i])
image = self.load_image(image_file)
self.i = self.i + 1
return (image, True)
def start_ip_camera_thread(self):
self._ip_thread = Thread(target=self.update_ip_camera, args=())
self._ip_running = True
self._ip_thread.start()
self._ip_exited = False
return self
def update_ip_camera(self):
while self._ip_running:
ret, img = self.cap.read()
if ret is False:
self._ip_running = False
self._ip_exited = True
self._ip_grabbed = False
return
self._ip_image = img
self._ip_grabbed = ret
self._ip_index += 1
# print('IPCAMERA THREAD got frame {}'.format(self._ip_index))
def cleanup(self):
self._ip_running = False
# --- PREPROCESSING ---
def process_resize(w, h, resize):
assert len(resize) > 0 and len(resize) <= 2
if len(resize) == 1 and resize[0] > -1:
scale = resize[0] / max(h, w)
w_new, h_new = int(round(w * scale)), int(round(h * scale))
elif len(resize) == 1 and resize[0] == -1:
w_new, h_new = w, h
else: # len(resize) == 2:
w_new, h_new = resize[0], resize[1]
# Issue warning if resolution is too small or too large.
if max(w_new, h_new) < 160:
print("Warning: input resolution is very small, results may vary")
elif max(w_new, h_new) > 2000:
print("Warning: input resolution is very large, results may vary")
return w_new, h_new
def frame2tensor(frame, device):
return torch.from_numpy(frame / 255.0).float()[None, None].to(device)
def read_image(path, device, resize, rotation, resize_float):
image = cv2.imread(str(path), cv2.IMREAD_GRAYSCALE)
if image is None:
return None, None, None
w, h = image.shape[1], image.shape[0]
w_new, h_new = process_resize(w, h, resize)
scales = (float(w) / float(w_new), float(h) / float(h_new))
if resize_float:
image = cv2.resize(image.astype("float32"), (w_new, h_new))
else:
image = cv2.resize(image, (w_new, h_new)).astype("float32")
if rotation != 0:
image = np.rot90(image, k=rotation)
if rotation % 2:
scales = scales[::-1]
inp = frame2tensor(image, device)
return image, inp, scales
# --- GEOMETRY ---
def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
if len(kpts0) < 5:
return None
f_mean = np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])
norm_thresh = thresh / f_mean
kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
E, mask = cv2.findEssentialMat(
kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf, method=cv2.RANSAC
)
assert E is not None
best_num_inliers = 0
ret = None
for _E in np.split(E, len(E) / 3):
n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
if n > best_num_inliers:
best_num_inliers = n
ret = (R, t[:, 0], mask.ravel() > 0)
return ret
def rotate_intrinsics(K, image_shape, rot):
"""image_shape is the shape of the image after rotation"""
assert rot <= 3
h, w = image_shape[:2][:: -1 if (rot % 2) else 1]
fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2]
rot = rot % 4
if rot == 1:
return np.array(
[[fy, 0.0, cy], [0.0, fx, w - 1 - cx], [0.0, 0.0, 1.0]], dtype=K.dtype
)
elif rot == 2:
return np.array(
[[fx, 0.0, w - 1 - cx], [0.0, fy, h - 1 - cy], [0.0, 0.0, 1.0]],
dtype=K.dtype,
)
else: # if rot == 3:
return np.array(
[[fy, 0.0, h - 1 - cy], [0.0, fx, cx], [0.0, 0.0, 1.0]], dtype=K.dtype
)
def rotate_pose_inplane(i_T_w, rot):
rotation_matrices = [
np.array(
[
[np.cos(r), -np.sin(r), 0.0, 0.0],
[np.sin(r), np.cos(r), 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
],
dtype=np.float32,
)
for r in [np.deg2rad(d) for d in (0, 270, 180, 90)]
]
return np.dot(rotation_matrices[rot], i_T_w)
def scale_intrinsics(K, scales):
scales = np.diag([1.0 / scales[0], 1.0 / scales[1], 1.0])
return np.dot(scales, K)
def to_homogeneous(points):
return np.concatenate([points, np.ones_like(points[:, :1])], axis=-1)
def compute_epipolar_error(kpts0, kpts1, T_0to1, K0, K1):
kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
kpts0 = to_homogeneous(kpts0)
kpts1 = to_homogeneous(kpts1)
t0, t1, t2 = T_0to1[:3, 3]
t_skew = np.array([[0, -t2, t1], [t2, 0, -t0], [-t1, t0, 0]])
E = t_skew @ T_0to1[:3, :3]
Ep0 = kpts0 @ E.T # N x 3
p1Ep0 = np.sum(kpts1 * Ep0, -1) # N
Etp1 = kpts1 @ E # N x 3
d = p1Ep0**2 * (
1.0 / (Ep0[:, 0] ** 2 + Ep0[:, 1] ** 2)
+ 1.0 / (Etp1[:, 0] ** 2 + Etp1[:, 1] ** 2)
)
return d
def angle_error_mat(R1, R2):
cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2
cos = np.clip(cos, -1.0, 1.0) # numercial errors can make it out of bounds
return np.rad2deg(np.abs(np.arccos(cos)))
def angle_error_vec(v1, v2):
n = np.linalg.norm(v1) * np.linalg.norm(v2)
return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0)))
def compute_pose_error(T_0to1, R, t):
R_gt = T_0to1[:3, :3]
t_gt = T_0to1[:3, 3]
error_t = angle_error_vec(t, t_gt)
error_t = np.minimum(error_t, 180 - error_t) # ambiguity of E estimation
error_R = angle_error_mat(R, R_gt)
return error_t, error_R
def pose_auc(errors, thresholds):
sort_idx = np.argsort(errors)
errors = np.array(errors.copy())[sort_idx]
recall = (np.arange(len(errors)) + 1) / len(errors)
errors = np.r_[0.0, errors]
recall = np.r_[0.0, recall]
aucs = []
for t in thresholds:
last_index = np.searchsorted(errors, t)
r = np.r_[recall[:last_index], recall[last_index - 1]]
e = np.r_[errors[:last_index], t]
aucs.append(np.trapz(r, x=e) / t)
return aucs
# --- VISUALIZATION ---
def plot_image_pair(imgs, dpi=100, size=6, pad=0.5):
n = len(imgs)
assert n == 2, "number of images must be two"
figsize = (size * n, size * 3 / 4) if size is not None else None
_, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap("gray"), vmin=0, vmax=255)
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
plt.tight_layout(pad=pad)
def plot_keypoints(kpts0, kpts1, color="w", ps=2):
ax = plt.gcf().axes
ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)
def plot_matches(kpts0, kpts1, color, lw=1.5, ps=4):
fig = plt.gcf()
ax = fig.axes
fig.canvas.draw()
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(ax[0].transData.transform(kpts0))
fkpts1 = transFigure.transform(ax[1].transData.transform(kpts1))
fig.lines = [
matplotlib.lines.Line2D(
(fkpts0[i, 0], fkpts1[i, 0]),
(fkpts0[i, 1], fkpts1[i, 1]),
zorder=1,
transform=fig.transFigure,
c=color[i],
linewidth=lw,
)
for i in range(len(kpts0))
]
ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)
def make_matching_plot(
image0,
image1,
kpts0,
kpts1,
mkpts0,
mkpts1,
color,
text,
path,
show_keypoints=False,
fast_viz=False,
opencv_display=False,
opencv_title="matches",
small_text=[],
):
if fast_viz:
make_matching_plot_fast(
image0,
image1,
kpts0,
kpts1,
mkpts0,
mkpts1,
color,
text,
path,
show_keypoints,
10,
opencv_display,
opencv_title,
small_text,
)
return
plot_image_pair([image0, image1])
if show_keypoints:
plot_keypoints(kpts0, kpts1, color="k", ps=4)
plot_keypoints(kpts0, kpts1, color="w", ps=2)
plot_matches(mkpts0, mkpts1, color)
fig = plt.gcf()
txt_color = "k" if image0[:100, :150].mean() > 200 else "w"
fig.text(
0.01,
0.99,
"\n".join(text),
transform=fig.axes[0].transAxes,
fontsize=15,
va="top",
ha="left",
color=txt_color,
)
txt_color = "k" if image0[-100:, :150].mean() > 200 else "w"
fig.text(
0.01,
0.01,
"\n".join(small_text),
transform=fig.axes[0].transAxes,
fontsize=5,
va="bottom",
ha="left",
color=txt_color,
)
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
plt.close()
def make_matching_plot_fast(
image0,
image1,
kpts0,
kpts1,
mkpts0,
mkpts1,
color,
text,
path=None,
show_keypoints=False,
margin=10,
opencv_display=False,
opencv_title="",
small_text=[],
):
H0, W0 = image0.shape
H1, W1 = image1.shape
H, W = max(H0, H1), W0 + W1 + margin
out = 255 * np.ones((H, W), np.uint8)
out[:H0, :W0] = image0
out[:H1, W0 + margin :] = image1
out = np.stack([out] * 3, -1)
if show_keypoints:
kpts0, kpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int)
white = (255, 255, 255)
black = (0, 0, 0)
for x, y in kpts0:
cv2.circle(out, (x, y), 2, black, -1, lineType=cv2.LINE_AA)
cv2.circle(out, (x, y), 1, white, -1, lineType=cv2.LINE_AA)
for x, y in kpts1:
cv2.circle(out, (x + margin + W0, y), 2, black, -1, lineType=cv2.LINE_AA)
cv2.circle(out, (x + margin + W0, y), 1, white, -1, lineType=cv2.LINE_AA)
mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
color = (np.array(color[:, :3]) * 255).astype(int)[:, ::-1]
for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, color):
c = c.tolist()
cv2.line(
out,
(x0, y0),
(x1 + margin + W0, y1),
color=c,
thickness=1,
lineType=cv2.LINE_AA,
)
# display line end-points as circles
cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA)
cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1, lineType=cv2.LINE_AA)
# Scale factor for consistent visualization across scales.
sc = min(H / 640.0, 2.0)
# Big text.
Ht = int(30 * sc) # text height
txt_color_fg = (255, 255, 255)
txt_color_bg = (0, 0, 0)
for i, t in enumerate(text):
cv2.putText(
out,
t,
(int(8 * sc), Ht * (i + 1)),
cv2.FONT_HERSHEY_DUPLEX,
1.0 * sc,
txt_color_bg,
2,
cv2.LINE_AA,
)
cv2.putText(
out,
t,
(int(8 * sc), Ht * (i + 1)),
cv2.FONT_HERSHEY_DUPLEX,
1.0 * sc,
txt_color_fg,
1,
cv2.LINE_AA,
)
# Small text.
Ht = int(18 * sc) # text height
for i, t in enumerate(reversed(small_text)):
cv2.putText(
out,
t,
(int(8 * sc), int(H - Ht * (i + 0.6))),
cv2.FONT_HERSHEY_DUPLEX,
0.5 * sc,
txt_color_bg,
2,
cv2.LINE_AA,
)
cv2.putText(
out,
t,
(int(8 * sc), int(H - Ht * (i + 0.6))),
cv2.FONT_HERSHEY_DUPLEX,
0.5 * sc,
txt_color_fg,
1,
cv2.LINE_AA,
)
if path is not None:
cv2.imwrite(str(path), out)
if opencv_display:
cv2.imshow(opencv_title, out)
cv2.waitKey(1)
return out
def error_colormap(x):
return np.clip(
np.stack([2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x)], -1), 0, 1
)
|